An Introduction to NMR-Based Metabolomics at the UNC Metabolomics Laboratory

Tom O'Connell, Ph.D. Director & Associate Prof. Pharmacotherapy

The Definition of Metabonomics

The quantitative measurement of metabolic responses in biological fluids, cells or tissues to pathophysiological stimuli.

Adapted from Nicholson and Wilson, Nature Reviews in Drug Discovery, 2, 668, 2003

Metabolomics vs. Metabonomics? Don't' worry about it.

Analytical Coverage of the Metabolome

Adapted from Sumner, LW, et al., Phytochem, 62, 817,2003

Main Analytical Approaches to Metabolomics

Pros & Cons of NMR-Based Metabolomics

Pros	Cons				
Comprehensive profiling by a single non-destructive method	 Relatively insensitive; concentrations in low μ-mole 				
 Inherently quantitative signals Minimal sample preparation 	 Spectral crowding necessitates advanced methods (2D, 1H-13C) on 				
 Very high information content for structure elucidation (stereo/regiochemistry) 	 some samples NMR spectral data libraries are growing, but still relatively 				
 Very high long term intra/inter- lab reproducibility 	small				

UNC Metabolomic Laboratory

Sensitivity & Resolution

- Sensitivity increases as B3/2
- Resolution increases linearly
- Cold probe adds ~ 3-4 fold sensitivity

Micro-coil NMR System

- Sample volumes of 10 μl
- Urine & serum analyzed in ~ 25 minutes w/out concentration
- Sensitivity gains with concentration
- Fully automated data collection
- Sample returned to vial/plate after data collection

Protasis High-throughput Sample System

Temperature controlled sample stack for up to 6 plates

Automated syringe injection from vials

In-line filters and reverse rinse protocols minimize clogs from biofluids

Sampling format is customizable allowing the use of multiple types of vials or microplates

Magic Angle Spinning NMR for Profiling of Intact Tissue

Yang et al., J. Proteome Res. 6, 2605, 2007

Typical Urine NMR Spectrum

Hundreds/thousands of peaks corresponding to hundreds/thousands of metabolites

Typical Urine NMR Spectrum

What types of samples can we look at?

Human serum

What types of samples can we look at?

Human bronchoalveolar lavage fluid

F

What types of samples can we look at?

Metabolomics Involves Many Samples

Looking for subtle differences in many spectra requires some data reduction/simplification

Each sample is described by ~ 200 variables Reduce the data by capturing the variance with combinations of variables

(ppm)	File Name	[0.50 0.53]	[0.53 0.59]	[0.59 0.61]	[0.61 0.63]	[0.63 0.66]	[0.66 0.69]	[0.69 0.72]	[0.72 0.75]	[0.75 0.79]	[0.79 0.81]	[0.81 0.83]	[0.83 0.85]	[0.85 0.9 [.]
3	s01_d01	2.04	4.20	1.88	1.60	2.17	2.08	2.42	2.64	2.83	1.80	1.76	2.01	9.75
4	s01 d03	2.15	4.38	1.95	1.68	2.25	2.19	2.51	2.69	2.81	1.82	1.81	2.00	9.62
5	s01 d05	2.37	4.81	2.18	1.85	2.47	2.38	2.75	2.88	3.05	1.98	1.95	2.10	9.36
6	s01 d07	2.47	4.97	2.26	1.91	2.54	2.45	2.83	3.03	3.18	2.01	1.98	2.13	8.91
7	s02 d01	2.12	4.42	1.94	1.66	2.24	2.15	2.52	2.70	2.85	1.86	1.83	2.15	10.26
8	s02 d03	2.29	4.73	2.15	1.81	2.42	2.35	2.71	2.93	3.04	1.99	2.01	2.25	10.06
9	s02 d05	2.36	4.85	2.19	1.87	2.46	2.37	2.76	2.91	3.04	1.98	1.95	2.11	9.05
10	s02_d07	2.41	4.86	2.20	1.89	2.50	2.40	2.80	2.94	3.07	1.99	1.97	2.14	8.88
11	s03_d01	2.39	4.88	2.22	1.88	2.52	2.48	2.87	3.22	3.56	2.20	2.17	2.58	11.11
12	s03_d03	2.41	4.88	2.22	1.89	2.58	2.48	2.89	3.19	3.45	2.15	2.12	2.47	10.62
13	s03_d05	2.43	4.92	2.24	1.91	2.56	2.47	2.88	3.17	3.38	2.14	2.06	2.32	9.41
14	s03_d07	2.38	4.83	2.20	1.87	2.50	2.43	2.83	3.18	3.41	2.09	2.02	2.26	9.42
15	s04_d01	2.43	5.00	2.21	1.89	2.57	2.51	2.89	3.22	3.49	2.21	2.16	2.54	11.18
16	s04_d03	2.53	5.20	2.35	2.00	2.67	2.57	3.05	3.36	3.61	2.27	2.21	2.51	10.79
17	s04_d05	2.85	5.58	2.51	2.12	2.94	2.84	3.28	3.45	3.63	2.31	2.27	2.43	8.84
18	s04_d07	2.74	5.49	2.45	2.11	2.83	2.79	3.17	3.45	3.63	2.32	2.24	2.46	9.85
19	s05_d01	2.24	4.71	2.14	1.82	2.44	2.43	2.78	3.06	3.48	2.20	2.09	2.52	11.43
20	s05_d03	2.35	4.85	2.22	1.89	2.51	2.57	2.96	3.25	3.56	2.26	2.19	2.52	10.68
21	s05_d05	2.44	4.98	2.27	1.93	2.59	2.52	2.88	3.09	3.28	2.13	2.05	2.26	9.04
22	s05_d07	2.42	4.91	2.21	1.92	2.55	2.49	2.88	3.11	3.35	2.14	2.12	2.19	9.48
23	s06_d01	2.77	5.63	2.51	2.15	2.94	2.86	3.31	3.58	3.73	2.39	2.42	2.77	11.49
24	s06_d03	2.89	5.92	2.66	2.30	3.04	2.98	3.47	3.63	3.82	2.50	2.50	2.71	10.84
25	s06_d05	3.09	6.24	2.80	2.41	3.18	3.12	3.57	3.78	3.97	2.59	2.55	2.76	10.60
26	s06_d07	3.01	6.05	2.71	2.34	3.11	3.01	3.50	3.69	3.89	2.53	2.50	2.75	10.67
27	s07_d01	2.89	5.81	2.58	2.23	3.02	2.94	3.36	3.66	3.85	2.51	2.49	2.75	11.38
28	s07_d03	2.79	5.71	2.53	2.22	2.91	2.83	3.29	3.55	3.78	2.43	2.42	2.70	11.02
29	s07_d05	3.00	6.05	2.71	2.31	3.08	3.01	3.47	3.73	3.91	2.53	2.46	2.70	10.38
30	s07_d07	2.87	5.85	2.62	2.27	2.99	2.89	3.39	3.60	3.73	2.46	2.46	2.57	10.22
31	s08_d01	2.04	4.21	1.86	1.66	2.19	2.13	2.48	2.77	2.99	1.91	1.89	2.16	10.86
32	s08_d03	2.35	4.82	2.19	1.89	2.55	2.49	2.89	3.30	3.54	2.22	2.23	2.48	11.50
33	s08_d05	2.60	5.27	2.41	2.07	2.75	2.68	3.09	3.34	3.51	2.25	2.25	2.40	9.80
34	s08_d07	2.39	4.88	2.24	1.89	2.54	2.48	2.87	3.11	3.35	2.15	2.12	2.27	9.96
39	s10_d01	2.37	4.84	2.18	1.87	2.53	2.41	2.80	2.99	3.14	2.07	2.07	2.22	10.01
40	s10_d03	2.44	5.02	2.30	1.94	2.63	2.55	2.94	3.11	3.26	2.12	2.13	2.21	10.07
41	s10_d05	2.76	5.57	2.55	2.14	2.89	2.78	3.16	3.42	3.54	2.29	2.21	2.33	9.05
42	s10_d07	2.70	5.46	2.49	2.10	2.79	2.73	3.19	3.38	3.50	2.23	2.19	2.33	9.07
43	s11_d01	2.28	4.72	2.10	1.79	2.44	2.40	2.82	3.00	3.19	2.05	2.03	2.39	10.45
44	s11_d03	2.54	5.20	2.39	1.98	2.66	2.62	3.09	3.25	3.44	2.21	2.18	2.46	10.20

Serum Metabolomics Analysis from Binned Data

Effects of methyl donor rich diet (choline, betaine, folic acid) on high dose ethanol consuption

Tools to Identify Biomarkers

Quantitative Fitting with NMR Database

The Human Metabolome Database

Metabolomics Toolbox: N-Acetylglutamic acid - Microso	ft Internet Explorer		
File Edit View Favorites Tools Help		A	
🕒 Back 🝷 🌍 🝷 🛋 😰 🏠 🔎 Search 🤺 Favo	rites 🚱 🔗 - چ 🚍 - 📴 🎉 🦓		
Address 🕘 http://redpoll.pharmacy.ualberta.ca/~aguo/www_hmdb_ca	/HMDB/scripts/CCMD_HTML.cgi?METABOCARD=HMDB01138	🔽 🄁 Go 🛛 Links 🎽 📆 🗸	
Metabolomics Toolbox		HMP LIMS	
Home Browse Biofluids ChemQuery TextQuery	SeqSearch DataExtractor MS Search IIMR Search Download HML Home Explain		
Human Metabolome Dat	abase		
		ímp 🛛	PDB File Experimental Image
Search HMDB for:	Search Show Sir	nilar Structure(s)	Experimental ¹ H NMR Spectrum
METABOCARD	N-Acetylglutamic acid		Experimental ¹³ C NMR Spectrum
Accession Number	HMDB01138		
Creation Date	2005-11-16 15:48:42		Experimental ¹³ C HSQC Spectrum
Last Update	2006-08-31 15:14:11		
Common Name	N-Acetylglutamic acid		Predicted ¹ H NMR Spectrum
Description	N-Acetylglutamic acid (abbreviated NAcGlu) is biosynthesized from glutamic acid and acetyl-CoA by the enzyme NAGS reaction, hydrolysis of the acetyl group, is catalyzed by a specific hydrolase.	C. The reverse	Predicted ¹³ C NMR Spectrum
	Chembank1034 DL-Acetylglutamic acid		
	N-Acetylglutamic acid acetyl-glutamate		Mass Spectrum
	acetylglutamic acid Ac-Glu-OH (N-Acetyl-L-Glutamic acid)		Cellular Location
	Acetyl-L-glutamic acid		
	N-acetyl-Glutamic acid 2-acetamido-L-Glutaraldehydic acid		
Synonyms	N-acetyl-5-oxo-L-Norvaline N-Ac-Glu-OH		
	N-Acetyl-DL-glutamic acid		
	N-Acetyl-L-glutamic acid N-Acetyl-L-glutamic acid-gamma-semialdehyde		
	N-Acetylglutamic gamma-semialdehyde		
	N-acetyl L-glutamic acid N-acetyl-L-glutamate		
	N-acetyl-glutamate N-acetylglutamate		
Chaminal IIIDAC Name			
Chamical IIIPAC Name		👌 🥑 Internet	
	🖹 tmoc_53 - M 🛛 👩 3 Internet 🔹 🛞 Profiler - tm 🛛 🗃 Microsoft Po 🔛 ACD/SpecM 🏠 Two_Week 🤅 🦨 😨	2 💪 💓 🔇 🗿 🧒 🔽 3:55 PM	

http://www.metabolomics.ca/

Metabolite ID with 2D Datasets <u>¹H-¹H or ¹H-¹³C correlation spectra on selected samples</u>

1 = terminal methyl groups of low density (LDL) and very low density lipoproteins (VLDL). 2 = valine. 3 = leucine. 4 = 3-hydroxybutyrate. 5 = lactate. 6 = methylene protons of LDL and VLDL. 7 = alanine. 8 = methylene protons of C3 of VLDL lipoproteins. 9 = allylic methylenes of lipoproteins. 10 = acetate. 11 = N-acetylated glyoproteins. 12 = methylene protons of C2 of VLDL. 13 = methylene protons between olefinic groups of lipoproteins. 14 = albumin lysyl methylene groups. 15 = phospholipid choline headgroups. 16 = taurine. 17 = glucose. 18 = glycerol. 19 = amino acid Ca protons. 20 = choline. 21 = methylene groups of phosphatidylethanolamines.

Targetted Metabolomics

Serum Metabolomics Analysis from Targetted **Metabolite Profiles**

R2X[1] = 0.453432

SIMCA-P+ 11.5 - 2/4/2008 1:26:37 PM

Ellipse: Hotelling T2

Moving from Global to Targeted Metabolomics

Global models show separation

Loadings guide metabolite ID

R2X[1] = 0.903587 R2X[2] = 0.0421382 SIMCA-P+11.5-2/7/20089:25:21 AM

Targeted model improves separation

Targeted loadings guide interpretation

OPLS Loadings Plot for Metabolite ID

Peak intensity relates to importance in discriminating the groups

Color relates to the confidence in the model

Combining Global Metabolomics with Targeted Metabolite Assays

Heat map of NMR spectra DCA Levels by Targeted LC/MS 24 8/cByJ2 8F1/J24 8F1/J24 81/3vImJ 81/3vImJ 8+ tf/J2 1/5vImJ '124 '124 11124 11124 11128 11128 11128 2124 11128 11124 11124 (EiJ8 0.5 0.45 0.4 0.35 DCA Conc. (uM) 0.3 0.25 0.2 0.15 0.1 0.05 non-responders phenotype 1 phenotype 2

> 16 strain inbred mouse panel of acute trichloroethylene (TCE) dosing Global metabolomics identifies <u>two responder "metabotypes</u>" (global NMR) Responder metabotypes have distinct levels of DCA metabolite (targetted MS)

Overall Process of Metabolomics Investigations

		A mark	
4.0 3.5	3.0 2.5	2.0 1.5	1.0
	Chemical Shift (pp	m)	
High th	roughpi	it colle	action

Data Processing/Reduction

Multivariate Statistics

Identify Critical Metabolites

Pathway Analysis

Acknowledgements

<u>Metabolomics Lab</u> John Grimes Wimal Pathmasiri Yi Shuai

Hamner-UNC Institute for Drug Safety Sciences Paul Watkins

