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End-to-End Support for Single Cell RNA-Seq

• Project success depends on recognition and good integration of all 
aspects of the single cell genomics workflow

• Failures in one aspect can lead to problems downstream

• Lack of integration makes troubleshooting especially difficult

• Relatively “easy” to collect data; potential to get “stuck” at last step
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Lessons learned from various scRNA-Seq projects
• Selecting the right approach for the project goals
• Importance of numbers and capture efficiency
• Full-length transcript versus 3’ (or 5’) end-counting

• Sample prep matters
• Single nuclei RNA-Seq for specific applications
• Effects of low viability sample preps on downstream data quality

• Data wrangling
• What single cell RNA-Seq looks like and why the reference is important

• A proposed model for integrated informatics support



Selecting the right approach for 
the project goals

Importance of numbers and capture efficiency



Single Cell RNA-Seq to Identify Cell-Type Specific 
Transcriptional Programs in Mammalian Cochlea

Modified from Waddington 1957
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Organ of Corti Goals of our single cell RNA-Seq study
• Transcriptional programs
• Understand changes in cellular plasticity
• Novel cell type markers



Modified from Waddington 1957

Theoretical principle of trajectory analysis with 
single cell RNA-Seq data

Undifferentiated 
Precursors

Differentiated 
Cell Types

Single cell profiles at multiple 
profiles provide snapshots of 

transcriptional expression 
across many cells



Modified from Waddington 1957

Theoretical principle of trajectory analysis with 
single cell RNA-Seq data

Undifferentiated 
Precursors

Differentiated 
Cell Types

Individual cell types can be 
identified from each time-point



Modified from Waddington 1957

Theoretical principle of trajectory analysis with 
single cell RNA-Seq data

Asynchrony in development allows 
for generation of a temporal model 
of expression across ”Pseudotime” 

Undifferentiated 
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Differentiated 
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Transcriptional trajectory associated with 
differentiation of each unique cell type 

can be analyzed



Single cell profiling with Fluidigm C1 was a 
good start, but was too low throughput 



Original single cell dataset could only 
distinguish major cell type differences

From Burn & Kelly et al 2015



Drop-Seq scRNA-Seq provided better 
resolution than Fluidigm C1

Kelly et al 2012

HCs 1

HCs 2

Non−epithelial

Interdental med NSCs 1

med NSCs 2

lat SCs

med SCs

−80

−40

0

40

80

−100 −50 0 50
tSNE_1

tS
N

E_
2

HCs 1
HCs 2
Non−epithelial
Interdental
med NSCs 1
med NSCs 2
lat SCs
med SCs

Drop-Seq data generated with Joey Mays (post-bac). 

Outer Hair 
Cells

Inner Hair 
Cells

-Relatively low cost, once established and working 
consistently (not guaranteed…)
-Considerable troubleshooting required (not plug & play)
-Lower sensitivity (1-2,000 genes detected per cell) than 
Fluidigm C1 or FAC-Seq
-Limited experimental design (captures back to back)

~1700 
cells
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Single	Cell	Partitioning,	Lysis	and	Barcoding

10

•Standard	sequencing	 configurations

•Easier	to	multiplex	with	non-SC	libraries

•High	quality	UMI	and	Cell	Barcode	reads

•High	performance	on	patterned	flowcells

3’	Assay	Scheme	- Gel	Bead	RT	Primers	for	Inline	Barcoding
• Cell partitioned with barcoded gel bead

• Cell Barcode & Unique Molecular 
Identifiers (UMI) on 3’-end of cDNA

• ~2000 median genes detected on 
average with ~50,000 mean sequencing 
reads per cells

• Gene-level counts data

10X Genomics droplet-based single cell RNA-Seq provided 
high-throughput method to profile large population of cells 

in unbiased manner

• High efficiency of 
capture in 10X 
platform is amenable 
to smaller input 
numbers of cells (small 
tissue or rare 
population)

• Much better suited to 
limited samples like 
mouse cochlea…



Workflow of droplet-based single cell RNA-Seq
profiling of the mammalian cochlea

• Novel Cell Type 
Markers

• Transcriptional 
Programs

Modified from Cantos et al 2000

Data Analysis.
And More 
Data Analysis.

Extract cochlear 
epithelium Dissociate cells

Single cell cDNA library 
generation & sequencing



• ~5000 P1 cochlear epithelia cells
• 99 Inner Hair Cells
• 294 Outer Hair Cells
• 88 Inner Phalangeal Cells
• 54 Inner Pillar Cells
• 229 Lateral Supporting Cells
• 3753 Medial Non-sensory Cells
• 74 Lateral Non-Sensory Cells

Single cell RNA-Seq of postnatal day 1 
cochlea identifies expected cell subtypes

Clusters defined in unbiased manner.

Cluster identities determined from 
marker gene expression.

Differential expression analysis can reveal genes uniquely enriched in each cell subtype (or groups of cells) 

Cochlear duct cross section
Sensory cells in Red and Green



Modified from Cantos et al 2000 (Wu Lab)
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4,153 Cells 10,489 Cells 9,741 Cells 9,541 Cells 3,812 Cells

As cells move from undifferentiated precursors to differentiated cell types, they become more transcriptionally distinct

Greater number of scRNA-Seq datapoints allows better modeling 
of dynamic expression changes during differentiation



Selecting the right approach for 
the project goals

Full-length transcript versus 3’ (or 5’) end-counting



Full-length scRNA-Seq should allow isoform 
discrimination / quantitation – requires sufficient coverage
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5’ to 3’ Coverage Plots

Fluidigm C1 (v1 Chemistry) Clontech SMARTer v4 
and SMART-Seq2



Single cell gene specific target amplification & qPCR to study 
crucial differential isoform usage in developing cochlea  

Whole 
transcriptome 
scRNA-Seq data was 
too sparse and had 
3’ bias – not reliable 
enough. Moved to 
STA -> qPCR 
approach

Mutation in mice 
and humans in 
intron of gene leads 
to mis-splicing and 
deafness. Cell type 
specific phenotype. C1 Biomark HD

Collaboration with Banfi Lab at Univ of Iowa – Nakano et al paper in final review



Sample prep matters

Single nuclei RNA-Seq for specific applications



Single nucleus RNA-Seq provides a useful 
alternative to whole single cell RNA-Seq

• Allows scRNA-Seq profiling 
of difficult to dissociate 
tissues
• Neuronal tissues
• Biobanked samples

• Avoid dissociation-
associated transcriptional 
changes
• Nuclear transcriptome 

representative of whole cell 
transcriptome
• Lower sensitivity & more 

intronic reads
Lake et al 2016 Science

Habib et al 2017 Nature Methods



Single nuclei DropSeq to study spinal cord neurons and 
cell type specific activity in behavior

Sathyamurthy & Johnson et al (2018) Cell Reports

Modified detergent 
concentration and 
adjusted flow rates to 
optimize single nuclei 
encapsulation 
efficiency

Time post-treatment of 
target signal upregulation



Habib et al 2017 Nature Methods “DroNc-seq“
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Single nuclei RNA-Seq has limited sensitivity – still 
good for identifying major cell types
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and effectiveness with 
cochlear epithelial cells



Sample prep matters

Effects of low viability sample preps on downstream data quality



scRNA-Seq capture input of a high viability 
cell preparation is important for 

• 10X Genomics 
recommends 
loading 90% 
viable cells or 
higher

• Often the 
underlying 
causes of below 
target # of cells

• Can contribute a 
“background 
signal” –
ambient RNA



Effects of low cell viability on downstream and 
options to enrich for viable cells

~10% cell viability & 
no dead cell removal

Dead cell removal -> 
50% cell viability

No clear 
inflection 
point

Viable cells 
with good 
transcript 
counts; low 
background



Any selection or manipulation can have the 
effect of biasing cell populations

• Selection / enrichment is 
trade—off between 
”cleaner” data and a 
potential to bias the data

• Alignment of cell rations 
with histology or flow 
cytometry can provide 
insight and confidence

CD
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Data wrangling 
What single cell RNA-Seq looks like and why the reference is important



Type of downstream data depends on scRNA-Seq
method - data defined by cDNA library type

• ”Full-length” scRNA-
Seq methods 
generate reads that 
can span entire 
transcript length –
might not cover very 
5’ or 3’ end

• 3’ or 5’ transcript end 
enriched scRNA-Seq
for gene-level counts 
(5’ for VDJ methods) 



What does ”full-length” single cell RNA-Seq data 
look like?
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Public reference annotations don’t cover all the 
possible transcript isoforms and polyA sites

• Be aware that you might be missing some of your reads for less mature reference annotations
• 3’ (or 5’) end counting could exacerbate this? 
• Cell-type specific rare exon usage of alternative polyA signal?

Bulk RNA-Seq Data 3’ Only scRNA-Seq



A complex genome adds some additional 
challenges – 3’ ends of genes can overlap

• “Unstranded” 
RNA-Seq reads 
aligning to 
overlapping 3’ 
end can’t be 
reliably 
disambiguated

• Interestingly, 3’-
end only (or 5’-
only) libraries are 
inherently 
“stranded” 



A proposed model for integrated 
informatics support



Guidance, Training & Directed Informatics Support

Experimental 
Design 
& Planning

Core Facility Embedded Bioinformatics

Two-way 
communication at 
wet-bench steps

Data QC and 
primary data 
processing

Subject matter 
expert query of 
data & identify 
specific testing

Basic level informatics-
trained end-user 

Advanced 
informatic 
analysis

Bioinformatic support: 
Lab-embedded, 
third-party, or 

core-embedded



Single Cell 
Analysis 
Facility

Sequencing
Facility & 
Genomics 

Tech 
Laboratory

NCI 
Genomics 

Core
Protein 
Analysis 

Core

NCI Investigator Labs 
(clinical & basic science)

& NIH Intramural Community
Broader Single Cell Community

Bioinformatic Analyst will be embedded in our Single Cell Analysis 
Facility and will work closely with SCAF team & NCI Investigator

NIH Bethesda Campus

Frederick National 
Lab Campus

• Sequencing 
Production

• Project Tracking 
• R&D Innovation
• Analysis Workflows

NIH Clinical Center on 
Main Bethesda Campus 

NCI Single Cell 
Analysis Facility

Collaborative 
Bioinformatics 

& NCI Data 
Science 

Laboratory

NCI Single Cell Analysis Facility as a collaborative team 
(we are hiring a bioinformatic analyst!)

NCI Flow 
Core
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