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Outline

« Why RNA-Seq?

 RNA: What are we assaying?

 RNA-Seq with lllumina ”Next-Generation” Sequencing (NGS)
 NGS RNA-Seq Data Processing

* RNA-Seq at Single Cell Resolution (scRNA-Seq)




Wildtype Mouse

Why RNA-Seq?

« Assaying gene expression differences
between conditions (as well as a variety of
other experimental designs)

N,
* Whole transcriptome = maximum “discovery” @ %

* Increasingly “routine” methodology and

Constitutive Knockout Mouse

analysis
« Sequencing costs have decreased "
» Increased access to facilities and expertise What other genes are

affected by knocking out
target gene “A”?



World of RNA — From Genome to Functional Protein
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Other RNA’s not shown, including miRNA, IncRNA, etc.



Alternative Splicing Increases RNA Transcript

MRNA transcribed from
gene locus, which in most
cases, is made up of exons
and introns

Post-transcription, nascent
transcripts have their exons
spliced together

Different sets of exons can
be used; can result in
alteration to protein coding
sequence & function

Splicing can vary across
tissues, specific cells,
developmental time &
disease

Complexity
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Not all exons / transcript isoforms are well
annotated in standard references...

Protein C

Diagram from Wikipedia “Alternative Splicing Entry”



How to we sequence it?

» Reverse transcribe RNA sequence
into complementary DNA sequence

* Generation of second strand and
amplification (if needed)

» Preparation of sequencing library by
fragmenting full-length molecules
and addition of adapters

Size limitation: Fragments ideally ~500 bp
for lllumina sequencing
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Diagram from Thermo Fisher Sci “Reverse Transcription”



lllumina Next-Generation Sequencing (NGS)
“Sequencing by Synthesis”
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» Adapters on ends of cDNA
molecules allow binding to
sequencing “flow cell”

» Amplification of clonal
“clusters” of cDNA
fragments

* “Massively parallel
sequencing”: hundreds of
millions of fragments
sequenced in parallel



lllumina Next-Generation Sequencing (NGS)
“Sequencing by Synthesis”
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Sequence read by fluorescent nucleotide incorporation during each “cycle”
Each cluster dot will display a color associated with nucleotide (A, B, G, or T)
Image processing -> conversion to Fastqg output (sequence with quality score)



Aligning / Mapping Reads -
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* Reads aligned to a reference genome (or transcriptome),
while accounting for splicing at exon junctions

* Note that fragment length is usually longer than actual
sequencing reads — end-sequencing to infer insert

» Transcript isoform inferred from exon coverage and spliced
reads (aided with statistical algorithm to resolve ambiguity)

» Transcript abundance estimation should account for transcript
size — larger transcripts more likely to have more reads... ©

Transcripts
and their
1 abundances

Iy - - - GEDGEES
Trapnell et al Nature Biotech 2010




Overview of RNA-Seq Analysis

(a) Pre-analysis
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Conesa et al (BMC Genome Biology 2016)

Experimental design and
quality control are crucially
important — talk to your
bioinformatician early and
often!

Many tools exist for
primary data processing,
differential expression (DE)
testing, and functional /
pathway testing

RNA-Seq datasets can
continue to be utilized
beyond the scope of the
original study — queried as
expression database,
integrate with other
datasets, etc.



Outline

« Why RNA-Seq?

 RNA: What are we assaying?

* RNA-Seq with lllumina "Next-Generation” Sequencing (NGS)
* NGS RNA-Seq Data Processing

 RNA-Seq at Single Cell Resolution (scRNA-Seq)




RNA-Seq at Single Cell Resolution

Single Cell RNA Sequencing Workflow
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https://hemberg-lab.github.io/scRNA.seq.course/



Overview of Common Single Cell RNA-Seq Methods

— FACS sorter

Cells trapped inside
hydrogel droplets
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Is single cell RNA-seq just RNA-seq with

more samples? Not really.

scRNA-Seq is zero-heavy data
* Depending on method, you could have 500 genes of 40,000 have non-zero values
* Analysis is a combination of discrete and continuous math (10 vs 0, and 1000 vs 1)

Differential expression usually starts with defining which samples to compare
* May require identification of outlier samples, normalization, and clustering of data
* Ability to select samples in each comparison groups makes data very flexible

Don’t trust any one gene. Dimensionality reduction provide more reliable “meta-genes”
* Both “drop-out events and noise/over-amplification can give the wrong impression

* Biologically relevant principle components can represent “meta-genes” that can help sort

out cell types

Protocols are limited by the low-input amount of RNA
* scRNA-Seq relies on quite a bit of PCR

* Total RNA, stranded, specialized protocols or total RNA methods generally not supported
* Reverse transcription usually happens in the presence of the lysate (not ideal conditions)
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* Manage expectations
e Don’t assume bulk

RNA-Seq analysis tools
are appropriate for

scRNA-Seq data



Summary — RNA-Seq Basics

« RNA-Seq allows the systematic assaying of the RNA expression within
biological systems with maximal discovery

» Selection of RNA-Seq protocol define which RNA molecules are assayed
(i.e. oligo-dT methods only pick up poly-adenylated transcripts)

* lllumina NGS sequencing requires fragmentation of molecules for
sequencing library preparation

* Informatic processing aligns reads to an annotated reference to determine
transcript identity; transcript isoforms can be inferred from sequenced
fragments by ratios of exon usage and splice sites

« Characterization of gene expression, or differences in gene expression
can be determined by carefully controlled bioinformatic analysis



Summary — Single Cell RNA-Seq Basics

» More widely accessible protocols are limited to RNA-Seq of
polyadenylated transcripts

 Sensitivity of detection is quite low and affected by many technical
challenges — results in "noisy” and zero-heavy data

» Technology, methods, and analysis methods have advanced, resulting in
higher throughput, lower cost, and better feasibility as a increasingly
“‘common” gene expression methodology

» Generates extremely flexible datasets, but still requires bioinformatics
investment / expertise — great efforts being made to make the analysis
more accessible
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