
Mascot Lab: ABRF Workshop

Feb. 5, 2005, Savannah, Georgia, USA

David Wishart, University of Alberta, Edmonton, Alberta, Canada

Introduction

Mascot is a web-based tool for predicting protein sequences from PMF and MS/MS data. The purpose of this lab is to familiarize you with the basic use of Mascot and the interpretation of Mascot results.

Example 1: Mascot Peptide Mass Fingerprint Analysis

A yeast fractionated sample has been treated with iodoacetamide (carbamidomethylation of the Cysteine residues) and then with 1-D SDS electrophoresis. One of the bands (about 75KDa) has been submitted to trypsin digestion followed by MALDI-TOF MS measurement.

 Open Netscape or Internet Explorer and go to http://gchelpdesk.ualberta.ca/ABRF2005/ and look for the 'example1.txt' link. Click on the link to view the file. Save the file to your home folder.

Mascot Inscot Help • Peptide Mass Fingerprint: The experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from an enzymatic experimental data are a list of peptide mass values from are enzymatic experimental data are a list of peptide mass values from are enzymatic experimental data are a list of peptide mass values from are enzymatic experimental data are a list of peptide mass values from are enzymatic experimental data are a list of peptide mass values from are enzymatic experimental data are a list of peptide mass values from are enzymatic experimental data are a list of peptide mass experimental data are a list of perimental data are a list of peptide mass experimental data are are data are a li	bt Search ptide Mass Fingerprint: The experimental data are a list of peptide mass values from an enzymatic digest of a protein. • Example of results report • More information quence Query: One or more peptide mass values associated with information such as partial or ambiguous sequence ings, amino acid composition information, MS/MS fragment ion masses, etc. A super-set of a sequence tag query. • Example of results report • More information KMS Ion Search: Identification based on raw MS/MS data from one or more peptides. • Example of results report • Example of results report	(MATRIX) SCIENCES	HOME ; WHAT'S NEW ! MASCOT ; HELP : PRODUCTS : SUPPORT : CONTACT
Ascot Help ascot Verview earch parameter ference equence databases ata file format ror tolerant search AQ's ser Meeting eser Meeting eser Meeting 004 Mascot Search Mascot Se	ptide Mass Fingerprint: The experimental data are a list of peptide mass values from an enzymatic digest of a protein. • Example of results report • More information quence Query: One or more peptide mass values associated with information such as partial or ambiguous sequence ings, amino acid composition information, MS/MS fragment ion masses, etc. A super-set of a sequence tag query. • Example of results report • More information if/MS Ion Search: Identification based on raw MS/MS data from one or more peptides. • Example of results report • More information	4244 28	HOME: WHAT'S NEW IMAGEOT INEEP INVOLUCIS: SOFFORT I CONTACT
Ascot Help ascot Overview over information Sequence Query: One or more peptide mass values associated with information such as partial or ar strings, amino acid composition information, MS/MS fragment ion masses, etc. A super-set of a sequence	ptide Mass Fingerprint: The experimental data are a list of peptide mass values from an enzymatic digest of a protein. • Example of results report • More information quence Query: One or more peptide mass values associated with information such as partial or ambiguous sequence ings, amino acid composition information, MS/MS fragment ion masses, etc. A super-set of a sequence tag query. • Example of results report • More information if/MS Ion Search: Identification based on raw MS/MS data from one or more peptides. • Example of results report • More information	Mascot	
ascot Help Example of results report More information ascot Overview 	 Example of results report More information quence Query: One or more peptide mass values associated with information such as partial or ambiguous sequence ings, amino acid composition information, MS/MS fragment ion masses, etc. A super-set of a sequence tag query. Example of results report More information MS Ion Search: Identification based on raw MS/MS data from one or more peptides. Example of results report More information 		Mascot Search
 Sequence Query: One or more peptide mass values associated with information such as partial or ar strings, amino acid composition information, MS/MS fragment ion masses, etc. A super-set of a sequence databases at a file format More information MS/MS Ion Search: Identification based on raw MS/MS data from one or more peptides. Example of results report More information MS/MS Ion Search: Identification based on raw MS/MS data from one or more peptides. Example of results report More information Search Form Defaults: Follow this link to save your preferred search form defaults as a browser cookie. 	ings, amino acid composition information, MS/MS fragment ion masses, etc. A super-set of a sequence tag query.		
Acting a growthm search Acting a growthm	 More information /MS Ion Search: Identification based on raw MS/MS data from one or more peptides. Example of results report More information 	earch parameter eference	 Sequence Query: One or more peptide mass values associated with information such as partial or ambiguous sequence strings, amino acid composition information, MS/MS fragment ion masses, etc. A super-set of a sequence tag query.
Data file format Scoring algorithm Results format Scoring algorithm Results format Scoring algorithm Scoring algorithm Results format Scoring algorithm Scoring algorithm Results format Scoring algorithm	 /MS Ion Search: Identification based on raw MS/MS data from one or more peptides. Example of results report More information 	Sequence databases	 Example of results report
cesuits format Example of results report More information AQ's Search Form Defaults: Follow this link to save your preferred search form defaults as a browser cookie. Ser Meeting Presentations 004	 Example of results report More information 	ata file format	 More information
AQ's Search Form Defaults: Follow this link to save your preferred search form defaults as a browser cookie.	More information	coring algorithm	 MS/MS Ion Search: Identification based on raw MS/MS data from one or more peptides.
Error tolerant search More information Search Form Defaults: Follow this link to save your preferred search form defaults as a browser cookie. Jaser Meeting Presentations Search Form Defaults: Follow this link to save your preferred search form defaults as a browser cookie. 2004	More information	Results format	 Example of results report
Jser Meeting Presentations 2004	orm Defaults: Follow this link to save your preferred search form defaults as a browser cookie.	irror tolerant search	
User Meeting Presentations 2004		AQ's	Search Form Defaults: Follow this link to save your preferred search form defaults as a browser mokie
More Help		2004	
		tore Help	
Help Topic Index		Help Topic Index	
Useful Links		Jseful Links	

2. Go to the **Mascot** website (**www.matrixscience.com**). This takes you to the Matrix Science homepage, which hosts Mascot. Click the '**Mascot**' link on the top of the form to go to the Mascot home page. Select the **Peptide Mass Fingerprint Search Form**. This search uses MALDI-TOF spectra of peptide ion masses from a protein digest to predict the protein sequence.

	cot - Peptide Mass Fingerprint -	Netscape		
File Edit View Go Bo	okmarks <u>T</u> ools <u>W</u> indow <u>H</u> elp			
	ence - Mascot - Peptide Mass Fin			
<i>{MATRIX</i> <i>SCIENCE</i>		HOME ! WHAT'S NEW ! MASCOT !HEI	P PRODUCTS SUPPORT CONTACT	Search Go
Mascot > Pepti	de Mass Fingerprint			
MASCO	T Peptide Mass Fin	gerprint		
Your name		Email		
Search title				
Database	MSDB 💌			
Taxonomy	All entries	×		
Enzyme	Trypsin 💌	Allow up to 🚺 💌 missed cleavages		
Fixed modifications	AB_old_ICATd0 (C) AB_old_ICATd8 (C) Acetyl (K) Acetyl (N-term) Amide (C-term)	Variable modifications AB_old_ICATd0 (C) AB_old_ICATd8 (C) Acetyl (K) Acetyl (K) Acetyl (N-term) Amide (C-term) ▼		=
Protein mass	kDa	Peptide tol. ± 1.0 Da 💌		
Mass values	⊙мн+ Ом _г	Monoisotopic 💿 Average 🔿		
Data file	Bro	wse		
Query NB Contents of this field are ignored if a data file is specified.				
Overview		Report top 20 💌 hits		
	Start Search	Reset Form		_
_			- 	
🛃 start 🔰 🛍 🗠	Documents 🛛 🖸 Microsoft Po	owerPoint 🔯 Matrix Science - Masc	(🔇 🛃 🍓 🎇 💭 🎯 11:27 AM 🗉

Fill in the fields as follows:

Your name: fill in with your name. Nicknames are okay too.

Email: your real email address. Mascot will email your results to you if you get disconnected or time out.

Search Title: use 'example 1' or some other descriptive title.

Database: this selects the database for Mascot to search against. Choose the NCBInr.

Taxonomy: allows the searches to be restricted to a specific species or group of species. Use 'All Species'.

Enzyme: the cleavage enzyme used to digest the protein into peptide fragments. Choose '**Trypsin**'.

Missed Cleavages: often a sample is only partially digested, resulting in peptides with intact cleavage sites. Increasing the number of missed cleavages increases the probability of

identifying missed cleavages in your sample, but it is computationally very expensive as the number goes beyond 2 or 3. Choose '1' allowed missed cleavage site.

Fixed modifications: this table allows you to select modifications to the amino acids, peptide Nand C-teminii, etc. The modification is applied to every instance of the modified group. This sample has been treated with iodoacetamide, so in the fixed modifications box, select '**Carbamidomethyl (C)**'.

Variable Modifications: like the fixed modifications, but Mascot here only 'considers' the modification; unmodified masses are equally considered. Leave the Variable Modifications list unselected.

Protein Mass: use 75 kDa.

Peptide Tolerance: this is a measure of the the mass spectrometer's ability to precisely report the sample peptide masses. Use a tolerance of **+/- 1 Da**.

Mass Values: this option lets you choose whether the masses have been reported with the charged proton included (MH+) or without (Mr). Choose **MH+**.

Monoisotopic or Average: The monoisotopic mass is the mass determined using the masses of the most abundant isotopes. The average mass is the abundance weighted mass of all isotopic components. Modern mass spectrometers can readily resolve the various isotope peaks of peptides and proteins, so choose **Monoisotopic**.

Data File: this is the ion peak table. Click Browse, then select the example1.txt.

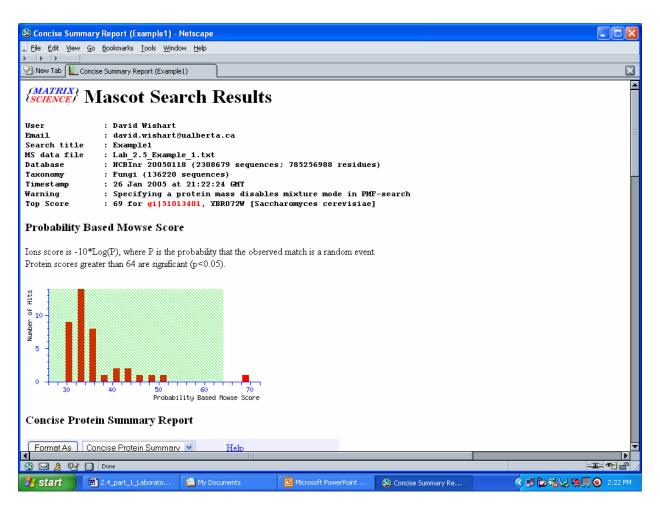
Overview: this adds some eyecandy but it not useful for mass fingerprint analyses, so leave it **unchecked**.

Report top: the number of hits to return. Select 20.

Your search form should now look like the one provided below.

	cot - Peptide Mass Fingerprint - I	Netscape				
Eile Edit View Go Bo	okmarks <u>T</u> ools <u>W</u> indow <u>H</u> elp					
🕘 New Tab 🗽 Matrix Scie	ence - Mascot - Peptide Mass Fin					×
<i>{MATRIX \ {SCIENCE}</i>			HOME : WHAT'S NEW ! M.	ASCOT HEL	P : PRODUCTS : SUPPORT : CONTACT	Search Go
Mascot > Pepti	de Mass Fingerprint					
MASCO	T Peptide Mass Fing	gerprint				
Your name	David Wishart	Email	david.wishart@ualber	ta.ca		
Search title	Example1					
Database	NCBInr 💌					
Taxonomy	All entries		*			
Enzyme	Trypsin 💌	Allow up to	1 💌 missed cleavag	es		
Fixed modifications	Biotin (N-term) Carbamidomethyl (C) Carbamyl (K) Carbamyl (N-term) Carboxymethyl (C)	Variable modifications	AB_old_ICATd0 (C) AB_old_ICATd8 (C) Acetyl (K) Acetyl (N-term) Amide (C-term)			Ξ
Protein mass	75 kDa	Peptide tol. \pm	1.0 Da 💌			
Mass values	⊙мн+ Ом _г	Monoisotopic	⊙ Average ○			
Data file	C:\Documents and Settings\David Bro	wse				
Query NB Contents of this field are ignored if a data file is specified.						
Overview		Report top	20 💌 hits			
	Start Search		Reset Form			
	_part_1_Laborato 🛛 📇 My Documer	nts 🔲 🖪	Microsoft PowerPoint	(N) Matrix Sc	:ience - Masc	🕲 👬 🐙 🍓 🛄 🥥 2:18 РМ

4. START the Mascot Search (not all at once: you'll crash the Mascot server!)

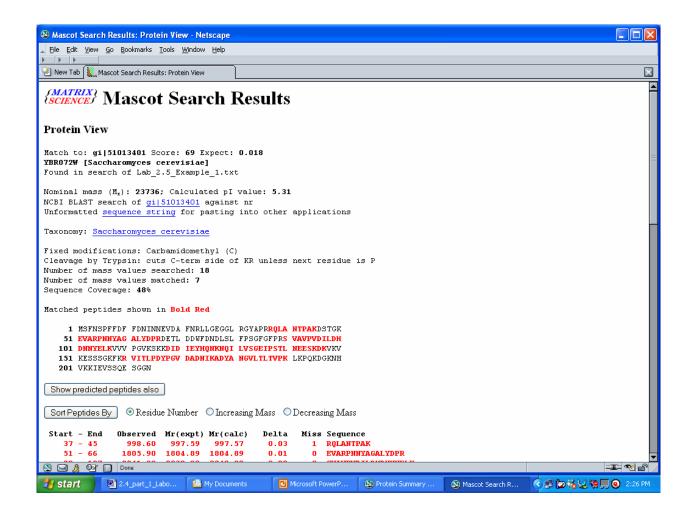

Dencise Summary Report (Example1) - Netscape	
Eile Edit View Go Bookmarks Tools Window Help	
New Tab Concise Summary Report (Example1)	X
(MATRIX) (SCIENCE) Mascot Search Results	
User : David Wishart Email : david.wishart@ualberta.ca Search title : Example1 MS data file : Lab_2.5_Example_1.txt Database : NCBInr 20050118 (2308679 sequences; 785256988 residues) Timestamp : 26 Jan 2005 at 21:19:43 GMT Warning : Specifying a protein mass disables mixture mode in PMF-search	=
Top Score : 69 for gi[51013401, YBR072W [Saccharomyces cerevisiae] Probability Based Mowse Score Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 76 are significant (p<0.05).	
St H J J J J J J J J J J J J J J J J J J	
Concise Protein Summary Report	
Format As Concise Protein Summary Help Significance threshold p< 0.05	▼ ••• _ ••
Start 2.4_part_1_Laborato 🚰 My Documents 📴 Microsoft PowerPoint 🔊 Concise Summary Re	 () 即 16 以 18 頁 ④ 2:20 PM

Mascot reports a top score of 69 for heat shock protein 26. But is it significant? Not according to Mascot. Mascot reports a match as significant if it has a match with a less than 5% chance of being a random hit. The top scoring matches here do not meet this criteria.

The chance of getting a random hit is proportional to the number of sequences being searched. One way to reduce that chance, and therefore increase the significance of a hit is to reduce the number of sequences being searched by restricting the search to a specific group of species. We know the hit is derived from yeast, so we don't need to search the entire NR database.

- 5. Go back to the search form and select 'Fungi' from the taxonomy field.
- 6. Rerun the search.

ABRF Workshop, 2005



The Mascot score remains the same as before, but the hit is now significant.

6. At the bottom of the window, use the pull down box to change "Concise Protein Summary" to "Protein Summary" and press the "Format As" button. You should see a new screen generated on your browser (see below). Scroll down and look at the peptides identified from the top scoring protein.

Net	w Tab 🗽 Protein	Summary Rep	ort (Example1)								
	Accession	Mass	Score D	escription							
	gi 51013401			-	ccharomyces	cere	visiael				
	gi 295614	23952			protein 26		-				
•	gi 6319546	23865	69 H	isp26p [Sac	charomyces	cerev	isiae]				
	gi 19112530	15499						aromyces pombe]			
	gi 46097766	96068			-		5.1 [Ustilage) maydis 521]			
	gi 44985089	148668			shbya gossy						
	gi 38107647	18468						the grisea 70-15]			
 gi 46431898 104432 conserved hypothetical protein [Candida albicans SC5314] gi 11276570 15240 ribosomal protein S16 - fission yeast (Schizosaccharomyces pombe) (fragment) 											
10. qi 1470350 167711 40 polyprotein [Candida albicans]											
11. gi 6323101 78619 40 Protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to t											
	gi 46431192	167654						la albicans SC5314]			
	gi 2565014										
	gi 12004595	42746			-		aromyces cere	visiae]			
	gi 19115207	72740					osaccharomyce				
	gi 49653622	134077		-	-	-		ansenii CBS767]			
	gi 49647784	54863					rrowia lipoly				
	gi 38109783	99710			-			the grisea 70-15]			
	gi 19074347 33370 35 hypothetical protein [Encephalitozoon cuniculi] gi 46444202 60971 34 transposase-like protein [Candida albicans SC5314]										
	91110111202	00511	01 0	ranopobabe	TIME PLOCE	III [0	anaraa arpree				
es	ults List										
	gi 5101340	01	Mass	23736	Score: <mark>69</mark>	E	qpect: 0.018	Queries matched: 7			
	YBR072W [\$	Saccharom	nyces cere	evisiae]							
	Observed	. – .			Start End	Miss	Peptide				
	998.60	997.59	997.5	7 0.03	37 - 45	1	RQLANTPAK				
	1274.60	1273.59	1273.5	9 -0.00	118 - 127	0	DIDIEYHQNK				
	1461.80	1460.79	1460.7	9 0.01	177 - 190	0	ADYANGVLTLTV	PK			
	1805.90	1804.89	1804.8	9 0.01	51 - 66	Ο	EVARPNNYAGAL	YDPR			
	1886.00	1884.99			160 - 176	-	RVITLPDYPGVD				
		2039.99									
	2041.00				90 - 107	0	SVAVPVDILDHD				
	2201.10	2200.09			128 - 147	1	NQILVSGEIPST	LNEESKDK			
	L - L	 000 E	0 1100 1	0 1011 70	1000 /0	1014		1427 00 1442 00 17	07 00 1040 00 1070 00		
						_					

7. Click on the accession number of the top protein on the "Results List" to see the peptide coverage over the protein. This will generate an image with the complete sequence of the protein and the identified peptides marked off in red as seen on the next page.

Example 2: MS-MS Fragment Ion Analysis.

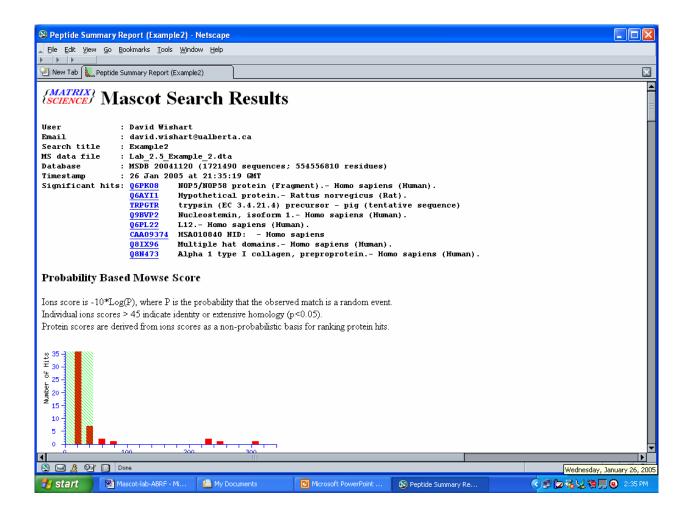
Human nuclei sample has been submitted to Iodoacetamide and migrated on 1-D SDS gel. One band has been excised at about 65KDa and processed with trypsin. The peptide mixture has been measured in duplicates with MALDI-TOF MS with a mass accuracy below 0.2 Da. The same sample has also been submitted to LC-MS/MS on a Q-TOF MS instrument. All obtained MS/MS spectra have been submitted to peak detection and concatenated into a single file.

- Open Netscape or Internet Explorer and go to http://gchelpdesk.ualberta.ca/ABRF2005/ and look for the 'example2.dta' link. Click on the link to view the file. Save the file to your home folder.
- 2. Go to the Mascot Home and select the MS/MS Ion Search Form.
- 3. Fill out the form as it appears below:

	ot - MS/MS lons Search - Netscape						
Eile Edit View Go Book	marks <u>T</u> ools <u>W</u> indow <u>H</u> elp						
	ce - Mascot - MS/MS Ions Search						×
<i>{MATRIX</i> } <i>(science)</i>			HOME : WHAT'S NEW : MAS	COTHELP	PRODUCTS SUPPORT CONT	ACT Search	Go
Mascot > MS/MS	Ions Search						
маѕсот	MS/MS Ions Searc	h					
Your name	David Wishart	Email	david.wishart@ualberta	.ca			
Search title	Example2						
Database	MSDB 💌						
Taxonomy	All entries		~				
Enzyme	Trypsin 💌	Allow up to	1 💌 missed cleavages				
Fixed modifications	Amide (C-term) Biotin (K) Biotin (N-term) Carbamidomethyl (C) Carbamyl (K)	Variable modifications	AB_old_ICATd0 (C) AB_old_ICATd8 (C) Acetyl (K) Acetyl (N-term) Amide (C-term)				
Protein mass	65 kDa	ICAT					
Peptide tol. ±	0.2 Da 💌	MS/MS tol. ±	0.8 Da 💌				
Peptide charge	2+ 💌	Monoisotopic	💿 Average 🔘				
Data file	C:\Documents and Settings\David Bro	wse					
Data format	Sequest (.DTA)	Precursor	m/z				
Instrument	ESI-QUAD-TOF						
Overview		Report top	20 💌 hits				
	Start Search		Reset Form				
	Cc	pyright © 2003 M	atrix Science Ltd. All Rights F	Reserved.			
							⊏☜₽∥
🛃 start 🔰 📓 Masc	ot-lab-ABRF - Mi 🛛 🔚 My Documents	5 🖸 M	icrosoft PowerPoint 🛛 🔊 N	latrix Scienc	te - Masc 🛛 💔) 🗏 🏶 🖌 🇞 📹 ا	🥑 2:34 PM

Some of the new fields you will see here are:

MS/MS tol: This is the Error window for MS/MS fragment ion mass values. Leave at 0.8.


ICAT: this restricts the analysis to cysteine containing residues. Leave **unchecked**.

Data Format: Mascot can parse several. Choose Sequest (DTA).

Precursor: The precursor mass from which the fragments are generated. This information is provided in the DTA file, so **leave blank**.

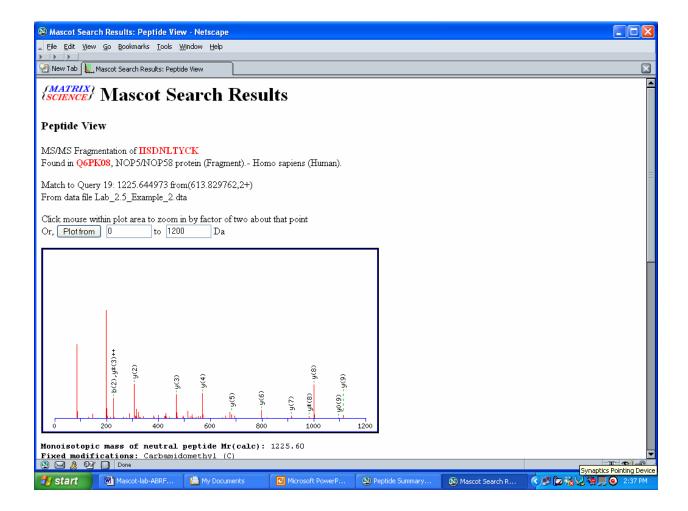
Instrument: the type of instrument used to acquire the MS/MS data. Choose **ESI-QUAD-TOF**.

4. Start the search.

Mascot appears by default with a 'Peptide Score '. Scroll down and look at the protein score for the top hit.

🕲 Peptide Summary Report (Example2) - Netscape	X
Elle Edit View Go Bookmarks Iools Window Help	
New Tab Experimentary Report (Example2)	\mathbf{X}
Format As Peptide Summary	
Significance threshold p< 0.05 Max. number of hits 20	
Standard scoring MudPIT scoring Ins score cut-off Show sub-sets	
	=
Show pop-ups 💿 Suppress pop-ups 🔿 Sort unassigned Decreasing Score 🛛 🚩 Require bold red 🗖	
Select All Select None Search Selected Error tolerant	
1. Q6PK08 Mass: 59154 Score: 306 Queries matched: 6	
NOP5/NOP58 protein (Fragment) Homo sapiens (Human).	
Check to include this hit in error tolerant search	
Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide	
 ✓ 19 613.83 1225.64 1225.60 0.04 0 52 0.014 1 IISDNLTYCK ✓ 26 662.89 1323.76 1323.71 0.04 0 89 2.7e-06 1 HAASTVOILGAEK 	
 ✓ 26 662.89 1323.76 1323.71 0.04 0 89 2.7e−06 1 HAASTVQILGAEK ✓ 28 664.36 1326.70 1326.66 0.04 0 44 0.079 1 TQLYEYLQNR 	
✓ 34 792.95 1583.89 1583.83 0.07 0 25 4.4 1 LSELLPEEVEAEVK	
 ☑ 37 814.89 1627.76 1627.70 0.05 0 65 0.00058 1 TYDPSGDSTLPTCSK ☑ 50 941.52 1881.03 1880.96 0.07 0 31 1.1 1 LNLSCIHSPVVNELMR 	
▼ <u>50</u> 941.32 1881.03 1880.96 0.07 0 31 1.1 1 LMLSCINSPVVMELMK	
Proteins matching the same set of peptides: T17299 Mass: 50347 Score: 306 Queries matched: 6	
hypothetical protein DKFZp564H2171.1 - human (fragment)	
AND27610 Mass: 60054 Score: 306 Queries matched: 6	
AF123534 NID: - Homo sapiens CAE91962 Mass: 52769 Score: 306 Queries matched: 6	
AX883409 NID: - Homo sapiens	
	-
2. <u>Q6AYI1</u> Mass: 69709 Score: 250 Queries matched: 6	
	ſ
🛃 Start 💿 🖾 Mascot-lab-ABRF - Mi 🖆 My Documents 🔄 Microsoft PowerPoint 🕲 Peptide Summary Re 🔇 🖉 🐎 🚷 😓 🎨 💭 😳 2:36	PM

For each protein, the first line contains the accession number (linked to the corresponding protein view, the protein molecular weight, and the total ions score (not including contributions from peptide mass matches), and the number of peptides matched. This is followed by a brief descriptive title, then a table summarising the matched peptides. The table columns contain:


- Hyper linked query number (see below)
- Experimental m/z value
- Experimental m/z transformed to a relative molecular mass
- Calculated relative molecular mass of the matched peptide
- Difference (error) between the experimental and calculated masses
- Number of missed cleavage sites

- The 5% significance level for the ions score
- Ions score. If there are duplicate matches to the same peptide, then only the highest scoring match contributes to the total score. The lower scoring matches are shown in brackets.
- Rank of the ions match (1 to 10, where 1 is the best match)
- Sequence of the peptide in 1-letter code

Mouse over the query '19' for the first hit. A pop up appears. The popup displays the complete list of peptide matches for that query.

Deptide Summary Report (Example2) - Netscape										
_ Eile Edit View <u>G</u> o Bookmarks Iools <u>W</u> indow Help										
New rau 🔊 🔊 Peptide Summary Report (Example2)										
Format As Peptide Summary Help	Ê									
Significance threshold p< 0.05 Max. number of hits 20										
Standard scoring 💿 MudPIT scoring 🔿 Ions score cut-off 🛛 Show sub-sets 🗖	_									
Show pop-ups 💿 Suppress pop-ups 🔿 Sort unassigned Decreasing Score 🔽 Require bold red 🗖	Ξ.									
Select All Select None Search Selected Error tolerant										
1. Q6PK08 Mass: 59154 Score: 306 Queries matched: 6										
NOP5/NOP58 protein (Fragment) Homo sapiens (Human).										
Check to include this hit in error tolerant search										
Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide I9 613.83 1225.64 1225.60 0.04 0 52 0.014 1 IISDNLTYCK										
✓ 15 013103 1223.04 1223.04 0.04 0 32 0.014 1 11358LITCK ✓ 26 662.89 1323.76 1323.71 0.04 0 89 2.7e-06 1 HAASTVQILGAEK										
Top scoring peptide matches to query 19 44 0.079 1 TQLYEYLONR										
3 Score greater than 46 indicates identity 65 0.00058 1 TYDPSGDSTLPTCSK										
✓ 3 Score greater than 46 indicates identity Status bar shows all hits for this peptide 31 1.1 1 LNLSCIHSPVVNELMR										
Score Delta Hit Protein Peptide										
51.9 0.04 1 Q6PK08 IISDNLTYCK										
Prot 15.7 -0.03 LLSDPADARLR man 14.6 -0.02 IINGDVPETLR On mine matcheds (
$\frac{1177}{14.5} = -0.12$										
hype 13.9 -0.05 LLSDLPDLVNK (agment)										
AAD2 13.8 -0.06 LLSDPRGLLDK Queries matched: 6										
AF12 12.3 -0.05 LISTPEDPKVK										
CAES 11.6 0.04 LISDDYTMLR Queries matched: 6 11.2 -0.13 LLEAIRTLGLK 0 0										
AX86 11.2 -0.07 LISWRIPUDK										
2. Q6AVII Mass: 69709 Score: 250 Queries matched: 6	-									
🔊 🖂 & 💇 🔲 http://www.matrixscience.com/cg/peptide_view.pl?file=/data/20050126/FktmiluE.dat8query=198hit=18index=Q6PK088px=1	2 f //									
🛃 Start 📄 🗟 Mascot-lab-ABRF - Mi 🖆 My Documents 🛛 📴 Microsoft PowerPoint 🕥 Peptide Summary Re 🔇 🖉 🍺 🚵 💥 🔅 💭 💿	2:37 PM									

Click the query '19' to bring up the peptide view.

$\frac{1}{100} = \frac{1}{100} = \frac{1}$	
1 114.09 57.55 0 0 1 0 0 10 10 2 227.18 114.09 0 1 1113.52 557.27 1096.50 548.75 1095.51 548.26 9 3 314.21 157.61 296.20 148.60 S 1000.44 500.72 983.41 492.21 982.43 491.72 S 4 429.23 215.12 411.22 206.12 D 913.41 457.21 896.38 448.69 895.40 448.20 7 5 543.28 272.14 526.25 263.63 525.27 263.14 N 798.38 399.69 781.35 391.18 780.37 390.69 6 6 656.36 328.68 639.33 320.17 638.35 319.68 L 684.34 342.67 667.31 334.16 666.33 333.67 5 7 757.41 379.21 740.38 370.20 T 571.25 286.13 554.23 277.62 553.24 277.13 4 8	
1 114.09 57.55 I 10 2 227.18 114.09 I 1113.52 557.27 1096.50 548.75 1095.51 548.26 9 3 314.21 157.61 296.20 148.60 S 1000.44 500.72 983.41 492.21 982.43 491.72 S 4 429.23 215.12 411.22 206.12 D 913.41 457.21 896.38 448.69 895.40 448.20 7 5 543.28 272.14 526.25 263.63 525.27 263.14 N 798.38 399.69 781.35 391.18 780.37 390.69 6 6 656.36 328.68 639.33 320.17 638.35 319.68 L 684.34 342.67 667.31 341.66 666.33 333.67 5 7 757.41 379.21 740.38 370.69 739.40 370.20 T 571.25 286.13	
3 314.21 157.61 296.20 148.60 \$ 1000.44 500.72 983.41 492.21 982.43 491.72 \$ 4 429.23 215.12 411.22 206.12 D 913.41 457.21 896.38 448.69 895.40 448.20 7 5 543.28 272.14 526.25 263.63 525.27 263.14 N 798.38 399.69 781.35 391.18 780.37 390.69 6 5 563.63 328.68 639.33 320.17 638.35 319.68 L 684.34 342.67 667.31 334.16 666.33 333.67 5 7 757.41 379.21 740.38 370.69 739.40 370.20 T 571.25 286.13 554.23 277.62 553.24 277.13 4 8 920.47 460.74 903.45 452.23 902.46 451.73 Y 470.21 235.61 453.18 227.09 3 3 9 1080.50 540.76 1063.48 532.24 1062.49	
4 429.23 215.12 411.22 206.12 D 913.41 457.21 896.38 448.69 895.40 448.20 7 5 543.28 272.14 526.25 263.63 525.27 263.14 N 798.38 399.69 781.35 391.18 780.37 390.69 6 6 565.36 328.68 639.33 320.17 638.35 319.68 L 684.34 342.67 667.31 334.16 666.33 333.67 5 7 757.41 379.21 740.38 370.69 739.40 370.20 T 571.25 286.13 554.23 277.62 553.24 277.13 4 9 920.47 460.74 903.45 452.23 902.46 451.73 Y 470.21 235.61 453.18 227.09 3 3 1080.50 540.76 1063.48 532.24 1062.49 531.75 C 307.14 154.08 290.12 145.56 2 2 1080.50 540.76 1063.48 532.24 1062.49 51.75	
5 543.28 272.14 526.25 263.63 525.27 263.14 N 798.38 399.69 781.35 391.18 780.37 390.69 6 6 563.63 328.68 639.33 320.17 638.35 319.68 L 684.34 342.67 667.31 334.16 666.33 333.67 5 7 757.41 379.21 740.38 370.69 739.40 370.20 T 571.25 286.13 554.23 277.62 553.24 277.13 4 9 920.47 460.74 903.45 452.23 902.46 451.73 Y 470.21 235.61 453.18 227.09 3 3 1080.50 540.76 1063.48 532.24 1062.49 531.75 C 307.14 154.08 290.12 145.56 2 2 9 K 147.11 74.06 130.09 65.55 1	
6 656.36 328.68 639.33 320.17 638.35 319.68 L 684.34 342.67 667.31 334.16 666.33 333.67 5 7 757.41 379.21 740.38 370.69 739.40 370.20 T 571.25 286.13 554.23 277.62 553.24 277.13 4 8 920.47 460.74 903.45 452.23 902.46 451.73 Y 470.21 235.61 453.18 227.09 3 9 1080.50 540.76 1063.48 532.24 1062.49 531.75 C 307.14 154.08 290.12 145.56 2 2 9	
7 757.41 379.21 740.38 370.69 739.40 370.20 T 571.25 286.13 554.23 277.62 553.24 277.13 4 8 920.47 460.74 903.45 452.23 902.46 451.73 Y 470.21 235.61 453.18 227.09 3 9 1080.50 540.76 1063.48 532.24 1062.49 531.75 C 307.14 154.08 290.12 145.56 2 2 9	
3 920.47 460.74 903.45 452.23 902.46 451.73 Y 470.21 235.61 453.18 227.09 3 1 1080.50 540.76 1063.48 532.24 1062.49 531.75 C 307.14 154.08 290.12 145.56 2 0 K 147.11 74.06 130.09 65.55 1	
1080.50 540.76 1063.48 532.24 1062.49 531.75 C 307.14 154.08 290.12 145.56 2 0 2 1 147.11 74.06 130.09 65.55 1	
K 147.11 74.06 130.09 65.55 1	
0.1]	
0.05 0 250 500 750 1000 S error 134 ppm Mass (Da)	
CBI BLAST search of <u>IISDNLTYCK</u> arameters: blastp, nr protein database, expect=20000, no filter, PAM30) ther BLAST <u>web gateways</u>	

Mascot also provides a 'Proteins Summary Report' for MS/MS data. The protein summary report seeks to answer the question: "which single protein best matches the experimental data?". In the case of a complex mixture of proteins, the hit list in a protein summary report tends to be dominated by those proteins which are well represented in the mixture. Proteins with just one or two peptide matches can be so far down the list they are never seen. In this case, the Peptide Summary Report is more appropriate.

	otein Summar	y Report (Example 2	2) - Netsca	аре					
-)))))))))))))))))))	ein Summary P		1.02						
e n	ew Tab 🏭 Prote	in Summary H	Report (Exa	imple2)						
	Accession	Mass	Score	Descrip	tion					
	Q6PK08	59154			-		-		- Hom	mo sapiens (Human).
	AAD27610	60054		AF12353			-			
	T17299	50347							2171.	.1 - human (fragment)
	CAE91962 AAH83986	52769 57044		AX88340 BC08398			•			
	Q8C8Y7	57044 60804				-			вти	KEN full-length enriched library, clone:A930001M05 product:n
	Q6DFW4	60818		No15 pr						
	070396	53591		-						(Nouse).
	072275	46481			-					0 (Fragment) Homo sapiens (Human).
	AAC23535	52051		AF06978	-		-			
ι.	AAF05769	60546	323	AF19437	1 NID: ·	- Rattu	s nor	vegio	cus	
2.	JC1087	69618	316	RNA hel	icase, .	ATP-dep	enden	t – 1	human	m
3.	AAP36310	69731	316	Homo sa	piens Di	EAD/H (Asp-G	lu-A	la-As	sp/His) box polypeptide 5 (RNA helicase, 68kDa) (Fragment)
	148385	69790		RNA hel						
	Q6P5F8	75093		-		-				ulus (Mouse).
	Q6AYI1	69709			-					regicus (Rat).
	Q8BTS0	69736				-				thymic cells cDNA, RIKEN full- length enriched library, clo
	1AVWA	24145		trypsin						
	1AN1E TRPGTR	24142 25078								cinal leech (fragments) pig (tentative sequence)
Results List										
	Q6PK08		ŀ	Mass: 59	9154	Score:	359	Ех	pect:	t: 2.2e-30 Queries matched: 10
	NOP5/NOF	58 prote	≘in (Fra	acment).	- Homo	sapiens	s (Hum	anì.	-	-
	Observed	-		calc)	Delta	-			Ions	s Peptide
	690.42	• •	, ,	89.41	0.01	405 -		1		-
	613.83			25.60	0.04	197 -	206	0	52	
	613.87			25.60	0.13	197 -		-		
								0		
	662.89			23.71	0.04	311 -		0	89	-
	664.36	1326.	70 13	26.66	0.04	269 -	278	0	44	TQLYEYLQNR
	684.89	1367.	77 13	67.64	0.12	175 -	184	1		ELNNYIMRCR
	792.95	1583.	89 15	83.83	0.07	222 -	235	0	25	5 LSELLPEEVEAEVK
	(94.93				-0.02	2 -	15	Ο		LVLFETSVGYAIFK
	793.93	1585.	85 1.5	85.88						
	793.93			85.88		-		0	65	TVNPSGNSTLPTCSK
	793.93 814.89	1627.		85.88 27.70	0.02	427 -			6.5	
) (793.93	1627.			0.05	-			65	

Example 3: MS-MS Fragment Ion Analysis of Neurosensin.

A novel neuropeptide hormone induced by music/sound has been found in vertebrates. It is likely a cleavage product of a larger protein. Preliminary MS and NMR analysis suggests that there are no known or suspected PTMs (post-translational modifications). MS/MS spectra were collected on an ion trap spectrum. Your task is to identify what this hormone is (its sequence, parent protein, whatever).

- Open Netscape or Internet Explorer and go to http://gchelpdesk.ualberta.ca/ABRF2005/ and look for the 'example3.mgf' link. Click on the link to view the file. Save the file to your home folder.
- 5. Go to the Mascot Home and select the **MS/MS Ion Search Form**.
- 6. Fill out the form as it appears below:

🕲 Matrix Science - Masc	ot - MS/MS lons Search - Netscape	,											
<u>⊾ F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ook	marks <u>T</u> ools <u>W</u> indow <u>H</u> elp												
6, 6, 6	S S S S S S S S S S S S S S S S S S S												
Net Home My Net	etscape 🔍 Search 🛇 Instant Message	e 🛇 WebMail 🛇 R	adio 🔍 People 🔍 Yellow P	ages 🛇 Dowr	nload 🛇 Calendar 🛅 Chann	els							
Netscape 👻 Enter S	iearch Terms 💽 🔍 🤉	iearch 🏼 🖋 Highlight	OPop-Ups Blocked: 3	🥖 Form Fill	 Ø Clear Browser History 	👼 News 🖾 Email 🔅 Weather »							
湟 New Tab 🗽 Matrix Scien	ce - Mascot - MS/MS Ions Search					×							
Mascot > MS/MS	Ions Search					<u> </u>							
MASCOT	'MS/MS Ions Searc	h				_							
Your name	David Wishart	Email	david.wishart@ualber	rta.ca									
Search title	Example3			7									
Database	MSDB			_									
Taxonomy	All entries		~										
Enzyme	None 💌	Allow up to	1 💌 missed cleavag	jes									
Fixed modifications	AB_old_ICATd0 (C) AB_old_ICATd8 (C) Acetyl (K) Acetyl (K-term) Amide (C-term)	Variable modifications	AB_old_ICATd0 (C) AB_old_ICATd8 (C) Acetyl (K) Acetyl (N-term) Amide (C-term)			=							
Protein mass	kDa	ICAT											
Peptide tol. ±	0.2 Da 💌	MS/MS tol. ±	0.8 Da 💌										
Peptide charge	2+ 💌	Monoisotopic	💿 Average 🔘										
Data file	C:\Documents and Settings\David Bro	wse											
Data format	Mascot generic 🛛 💌	Precursor	m/z										
Instrument	ESI-TRAP 💌												
Overview		Report top	20 💌 hits										
	Start Search		Reset Form			-							
	ot-lab-ABRF - Mi 📔 My Documents		icrosoft DowerDaiph	Duration of the		H 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
🛃 start 🔰 🖾 Maso	ot-lab-ABRF - Mi 🔋 🛗 My Documents	(C M	icrosoft PowerPoint 🧯	🗿 Matrix Scien	ce - Masc	🖓 🗩 🖾 🛣 🐨 🚍 🙂 - 2:55 PM							

7. Start the search. Use the techniques and tricks you learned in the previous 2 examples to see if you can get a meaningful result. This last problem is more open-ended and we won't guide you through all the steps to get the answer.

Appendix

1. Resources

i) Original Papers

- Perkins, DN, Pappin, DJ, Creasy, DM and Cottrell, JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. *Electrophoresis* **20**:3551-3567.

- Pappin, DJC, Hojrup, P and Bleasby AJ, (1993) Rapid identification of proteins by peptide-mass fingerprinting. *Curr. Biol.* 3:327-32.

ii) Web Sites:

- Matrix Science: <u>http://www.matrixscience.com</u>

Acknowledgements

Thanks to Dr. Gary Van Domselaar (University of Alberta) for his assistance and insight in helping to prepare these examples