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Metabolomics is an emerging field that involves qualitative and quantitative measurements of small molecule
metabolites in a biological system. These measurements can be useful for developing biomarkers for diagnosis,
prognosis, or predicting response to therapy. Currently, a wide variety of metabolomics approaches, including
nontargeted and targeted profiling, are used across laboratories on a routine basis. A diverse set of analytical
platforms, such as NMR, gas chromatography-mass spectrometry, Orbitrap mass spectrometry, and time-of-flight-mass
spectrometry, which use various chromatographic and ionization techniques, are used for resolution, detection,
identification, and quantitation of metabolites from various biological matrices. However, few attempts have been
made to standardize experimental methodologies or comparative analyses across different laboratories. The
Metabolomics Research Group of the Association of Biomolecular Resource Facilities organized a “round-robin”
experiment type of interlaboratory study, wherein human plasma samples were spiked with different amounts of
metabolite standards in 2 groups of biologic samples (A and B). The goal was a study that resembles a typical
metabolomics analysis. Here, we report our efforts and discuss challenges that create bottlenecks for the field. Finally,
we discuss benchmarks that could be used by laboratories to compare their methodologies.
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METABOLOMICS: OPPORTUNITIES AND CHALLENGES

Metabolomics involves the comprehensive detection and
identification of endogenous metabolites representing the
“metabolome.” Small molecule metabolites are substrates
or products in metabolic processes. Metabolomics pro-
vides a systems biology snapshot of the net expression of
metabolites from several known pathways and is hence,
a powerful tool for biomedical research. Moreover, as
minor perturbations can lead to major metabolic changes,
the metabolome is an attractive target for analysis. The
interrogation of the relative abundance of these metabo-
lites not only provides a snapshot of the metabolic
phenotype but also offers insights into pathway pertur-
bations in health and disease.1–4 However, procedural,

technical, and instrumental limitations have been major
barriers for widespread use of this technology for basic,
clinical, and translational research.

Recent developments in ultra-performance liquid
chromatography (UPLC) coupled with highly sensitive
time-of-flight (TOF) and Orbitrap mass spectrometry
(MS) have given investigators improved chromatographic
resolution and sensitivity for detection of metabolites in
a biologic sample.5–10 Identification of small molecule
metabolites to delineate new molecular mechanisms has
been enhanced with the application of multivariate data
analysis methods for chemometric data.7–12 Metabolomics
has been used for a variety of studies, such as develop-
ment of injury and disease biomarkers,13–17 functional
genomics, biomarker discovery, and integrative systems
biology.18–20 Metabolomics technology is a central com-
ponent of the personalized medicine paradigm that
intends to understand the rewiring of molecular networks
in health and disease.21, 22 A standardized metabolomics
design would consider the use of an optimal number of
replicates, quality control samples, batch randomization,
and reference standards, which in turn, would permit
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reuse of the data to interpret, confirm, or validate research
findings.23–25 Although sample collection and handling
are critical for maintaining molecular integrity, there is
a paucity of specific protocols that will help minimize
the analytical error for comprehensive or targeted
metabolomic profiling.26, 27 Metabolomics research that
uses bio-banked samples is challenging as a result of pre-
and postanalytical variables that affect the quality of
resultant data. Because metabolomics is still an emerging
field, many parameters, such as sample stability, matrix
effects, ion interference, and reproducibility of sample
processing, need optimization. The tremendous chemical
diversity of metabolites from different biologic matrices
makes broad-range metabolite extraction a challenging
process.28, 29 Furthermore, in-depth metabolomic analysis
requires optimization of chromatographic separation and
MS parameters.30, 31 Finally, the front-end improvements,
in addition to innovations in data pre- and postprocessing
methods, are critical for improving difference detection
among the sample groups.32, 33 Metabolomics research poses
several challenges for ensuring data quality, metabolome
coverage, and the reuse of the rich information generated
for hypothesis testing or verification. This requires inter-
laboratory replicative studies, availability of public data,
protocols and methodologies that would provide a frame-
work for qualification, and applications of systems biology
outcomes.34

THE ABRF MRG 2013 STUDY: LESSONS LEARNED

The Metabolomics Research Group (MRG) wished to
conduct an interlaboratory study to assess the ability of
metabolomics laboratories to conduct successful untar-
geted and targeted metabolomics analyses. The overall
MRG 2013 study design goal was to replicate an initial
quantitative metabolomics discovery experiment that
either a core facility or a research laboratory would
perform. A typical metabolomics study involves 2 or more
study groups with multiple samples/group (n . 1) to
provide statistical power to the measured outcomes. As
metabolomics data sets tend to have highly variable
backgrounds, the number of biological replicates is critical
for reliable and reproducible biomarker discovery and
validation efforts.

An American Society for Mass Spectrometry survey
done in 2010 revealed that blood was the most commonly
analyzed tissue or biofluid used in metabolomics studies
(67% of the respondents had used serum or plasma,
followed by 49% urine). Therefore, we chose National
Institute of Standards and Technology (NIST) plasma,
which has been thoroughly evaluated for the concen-
trations of 60 metabolites by use of selected reaction
monitoring.35 As our goal was to recapitulate a biologic
study, the sample set was made up of 2 groups, A and B,
containing plasma spiked with 17 compounds at different
concentration levels (Table 1). Furthermore, for each

T A B L E 1

Schema for metabolite spiking in plasma

Compound name MF MW
Target conc
A (mM)

Target
conc B (mM)

Unspiked
concentration (mM) Ratio A/B

Sarcosine C3H7NO2 89.10 10 20 Probably negligible 0.5
Betaine C5H11NO2 117.15 50 100 33–88 [0.62,0.73]
Taurine C2H7NO3S 125.15 50 100 55–162 [0.68,0.81]
Nicotinic acid (niacin) C6H5NO2 123.11 50 100 49–53 [0.66,0.67]
Creatine C4H9N3O2 131.14 50 100 30–55 [0.62,0.68]
Suberic acid C8H14O4 174.20 5 10 3.6 0.63
Quinolinic acid C7H5NO4 167.12 3 6 0.47 0.54
Acetaminophen C8H9NO2 151.06 5 20 Dose dependent 0.25
Acetylcarnitine C9H17NO4 203.12 16 8 6 1.57
Caffeine C8H10N4O2 194.08 8.50 48.50 Dose dependent 2–10 mg/l 0.18
Creatinine C4H7N3O 113.06 69.98 9.98 70 1.75
DL-Indole-3-lactic acid C11H11NO3 205.07 4.2 1.2 2.8 1.75
L-Arginine C6H14N4O2 174.11 3.7 48.7 80 0.65
L-Isoleucine C6H13NO2 131.09 54.5 4.5 60–80 [1.59,1.78]
Xanthosine C10H12N4O6 284.08 7.00 2 5 1.71
Urea CH4N2O 60.06 4000 8000 ND 0.5
Indoxyl sulfate C8H7NO4S 213.01 2 18 ND 0.11

MRG 2013 study sample spiked-in compounds and concentrations (conc). The bracketed values denote the expected ratios for all 17 metabolites. For endogenous metabolites
with a concentration range in plasma, the values reflect low and high ends of the expected concentration ratio. MF, molecular formula.
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group, 3 subgroups (A1, A2, and A3 and B1, B2, and B3)
were created by spiking compounds with a 10% variation
in concentration, such that the replicates would be
representative of biologic variability (Fig. 1A). The
expected ratios for the spiked metabolites are illus-
trated in Fig. 1B. The spiked plasma samples were
measured in aliquots (100 ml) and lyophilized to enable
shipping at room temperature. Lyophilization did not in-
terfere significantly with sample analysis or perturb input
compound concentrations if the samples were frozen at
280°C after lyophilization until reconstituted (Fig. 2).
Four criteria were used for compound selection: 1) most
of the spiked-in compounds should be endogenous with
known concentrations in NIST plasma; 2) compounds
should be selected, such that they are well distributed in
terms of ability to be analyzed by a particular technique;
for example, some compounds should be detectable by
electrospray ionization (ESI)+, whereas others with ESI2,
electron ionization (EI), or atmospheric pressure chemical
ionization; 3) compounds should be selected with a range of
difficulty regardless of the technique used; and finally, 4)
high-purity compounds must be chosen. These criteria were
expected to keep the analysis open with respect to the
analytical platform used while allowing the capture of
a reasonable cross-section of metabolites. Furthermore, we
anticipated that a combination of platforms would
yield broader and deeper metabolome coverage. Each
participating laboratory received 100 ml lyophilized
aliquots of 6 plasma samples spiked with different
concentrations of 17 compounds (Table 1). The end

users were provided with an instruction sheet for re-
constitution and data reporting format (Supplemental
Data). The choice of the analytical platform was left
to the end user’s discretion. The participants were
asked to report back metabolites that were deemed to
be significantly different between the 2 biological
groups with the help of analytical platforms and
bioinformatics analyses that are routinely used in their
laboratories. The participants were given the option to
carry out the analyses blinded (nontargeted metab-
olomics) or with the knowledge of the spiked-in
compounds (targeted metabolomics). An international
group of participants expressed interest in receiving
and analyzing samples. A total of 14 participants
returned data, with some by use of multiple analytical
platforms, for a total of 25 analyses (see Supplemental
Table 1).

Overall, liquid chromatography (LC)-MS was found
to be the most commonly used platform to analyze study
samples (Fig. 3), which is consistent with metabolomics
studies reported in PubMed. With respect to the LC-MS
platforms, the metabolite detection accuracy was found to
be dependent on the protocol used for sample processing,
as well as the analytical conditions (column chemistry,
mobile phase, etc.). Furthermore, the quantification trends
were quite consistent across laboratories that use LC-MS
platforms (Fig. 4). For example, the quantitative data
for taurine, suberic acid, caffeine, and creatinine were
most consistent across laboratories and analytical plat-
forms (Table 2). It is noteworthy that nearly all of the

FIGURE 1

MRG 2013 study design. A) The sample was made up of 2 groups, A and B, containing NIST plasma spiked with 17
compounds at different levels (Table 1). For each group, 3 subgroups (A1, A2, and A3 and B1, B2, and B3) were
created by spiking compounds at concentrations that would be representative of biologic variability. B) Spiking scheme
for the 17 spiked metabolites.
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participants determined the same quantitation trends
(greater A or B sample amounts), sometimes as predicted
by reported spiked amounts (Table 1) but more often in
the opposite direction (Fig. 5). This result suggests the
possibility of an error at some stage in sample preparation
for the study, such as reversing the A and B amounts for
some compounds. However, such an error would not
affect the overall goals of the study, which was to
determine which compounds (of the spiked compounds)
differed between samples and then to determine the
identity of those compounds. Quantification of metabo-
lites with high endogenous plasma concentrations, such as
L-arginine, L-isoleucine, and betaine, turned out to be the
most challenging. Although urea and indoxyl sulfate
were spiked at relatively high concentrations (Table 1 and
Fig. 5), they were not detected by any of the participants
or MRG members. In the initial test-runs by the MRG
members, we found that samples resolved on a C18 reverse-
phase (RP) column with a water:acetonitrile (ACN)
gradient were able to detect all metabolites reported,
whereas the hydrophilic interaction LC amide column was
more sensitive for detection of polar metabolites, although
the metabolome coverage was inferior to the C18 RP
column. The identification and detection of all spiked
metabolites were challenging for most participants. As

shown in Supplemental Table 1, participants who used
only 1 analytical platform have fewer identifications com-
pared with those who used .1 platform, thus providing
broader metabolome coverage. In addition, sample pro-
cessing, gradient conditions, and column chemistry are
likely to affect the resolution and signal of metabolites that
were detected (Fig. 3). In addition, room-temperature
shipping of lyophilized samples (done to keep the cost of
the study low) could lead to metabolite degradation as
a result of atmospheric oxidation or high temperature,
thus leading to some of the observed inconsistencies in the
quantitation of metabolites. Our data show that the use of
2 platforms provides complementary information that
helped increase metabolome coverage. We also found that
the quantitation of spiked metabolites with high endog-
enous levels was not as accurate compared with those that
had lower endogenous levels. Metabolite identification
remains an important bottleneck in the field. Finally,
given the current constraints of data-processing workflow
for untargeted metabolomics data, most of the partici-
pants found it difficult to identify many of the spiked
metabolites. However, when the identity was made avail-
able, the detection and quantitation accuracy increased,
demonstrating a practical challenge for use of this high-
throughput technology.

FIGURE 2

Total ion chromatograms of frozen (green) and
lyophilized (red) MRG 2013 study samples.
Plasma samples were processed, frozen or
lyophilized, reconstituted in MS-compatible
buffer, resolved by use of LC, and analyzed
on an electrospray-TOF mass spectrometer.
The total ion currents (TICs) were overlaid to
examine visual differences in chromatographic
elution patterns and peak intensities.

FIGURE 3

Analytical platforms used by the participants.
Fourteen laboratories that returned data per-
formed a total of 25 analyses on a variety of
platforms. QTOF, quadrupole TOF; QqQ, triple
quadrupole.

CHEEMA ET AL. / THE ABRF METABOLOMICS RESEARCH GROUP 2013 STUDY

86 JOURNAL OF BIOMOLECULAR TECHNIQUES, VOLUME 26, ISSUE 3, SEPTEMBER 2015

http://JBT.fasebj.org/lookup/suppl/doi:10.7171/jbt.15-2603-001/-/DC1


SUMMARY AND CONCLUSIONS

Despite extensive technological advancements, several
challenges still remain, restricting routine use of metab-
olomics technology in laboratories. Untargeted analysis,
which requires accurate detection and relative quantitation
of many unknown analytes, followed by the identification
of those that differ significantly between study groups, is
especially difficult. Some questions to consider include the
following: what is the optimal way of sample collection,
handling, and storage for long-term bio-banking? How do
preanalytical variables affect data quality? What factors

should be considered for designing a metabolomic
experiment? How can chromatographic and mass spectro-
metric parameters be improved for reproducible metab-
olome coverage? How is metabolite recovery impacted by
matrix effects, and how can this be addressed? Finally,
what is the minimum information associated with a
metabolomics experiment that needs to be reported for
standardized publishing? Controlled metabolomics experi-
ments are difficult to report in a manner that ensures their
cross-platform/laboratory reproducibility. We believe that
consolidation of validated metabolomics methodologies

FIGURE 4

Accuracy of metabolite detection and quanti-
fication. The participant data were analyzed for
accurate metabolite identification and expected
ratios between the 2 groups, per the spiking
design. Participants who used LC-MS showed
higher correlation with the expected results,
partially as it was the most commonly used
analytical platform.

T A B L E 2

MRG 2013 member group results

Lab ID Member 1 Member 2 Member 3

Platform used QTOF TQ QTOF1 (5600 Triple TOF) QTOF2 (Synapt G2-S) Orbitrap

Platform type Untargeted Targeted Untargeted Untargeted Untargeted

Sample name Fold change (A/B) Fold change (A/B) Fold change (A/B) Fold change (A/B) Fold change (A/B)

Sarcosine 1.08 0.97 1.38 1.40 1.00
Betaine 3.53 0.81 2.92 1.84 0.59
Taurine 0.84 0.28 0.35 3.99
Nicotinate 5.11 0.28 5.52 9.38 4.08
Creatine 0.79 0.50 1.54 2.07 0.87
Suberic acid 0.17 1.19 0.19 0.53
Quinolinic acid 0.37 0.90 0.38
Acetominophen 8.78 8.06 8.68 8.09
Acetylcarnitine DL 0.72 0.43 0.62 0.48
Caffeine 0.78 0.15 0.29 0.20 1.69
Creatinine 1.61 1.78 1.55 1.65 0.90
DL-Indole-3-lactic acid 0.42 0.51 0.20 1.12
Arginine 0.17 2.10 1.71 1.99 1.26
Leucine-isoleucine 0.86 0.59 0.75 0.49 0.47
Xanthosine 0.16 0.60 0.12 0.61

TQ, triple quadrupole
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and benchmarking standards of use and reporting will
augment routine and widespread use of this powerful and
cost-effective technology.
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