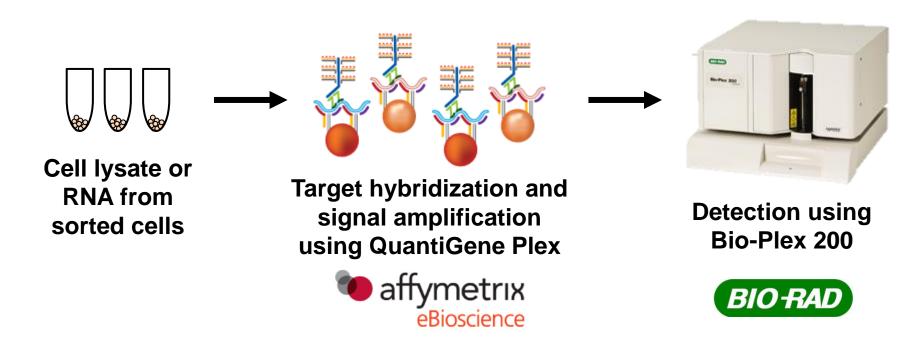


Abstract

The Flow Cytometry Research Group has continued with the goal of establishing best practice guidelines for cell sorting conditions that minimize cell stress, perturbation, or injury to the sorted cell populations. In prior FCRG studies, gene expression changes in Jurkat T lymphoblast cells were measured following cell sorting with different system pressures and nozzle sizes where minimal effects observed resolved over time in culture. Last year's study examined the effect sorting has on primary cells (C57BI/6 mouse splenic B lymphocytes). B lymphocytes were isolated using multiple flow sorters with 100 micron nozzle size/20 psi pressure or 70 micron nozzle size/70 psi pressure sorter configurations. Genome-wide gene expression analysis was performed on selected samples using affymetrix microarrays and a small number of candidate genes were identified as responding differentially in high or low pressure conditions. In the latest study, additional samples from the same batch of sorting runs were assayed by eBioscience QuantiGene Plex (QGP) to validate the significance of the candidate genes identified in microarray data. Since the QGP assay is a highly multiplexed bead based assay, additional genes known to respond to cell stress and damage were also evaluated for changes as a result of cell sorting. Details of the study and results will be presented along with future plans.

Background

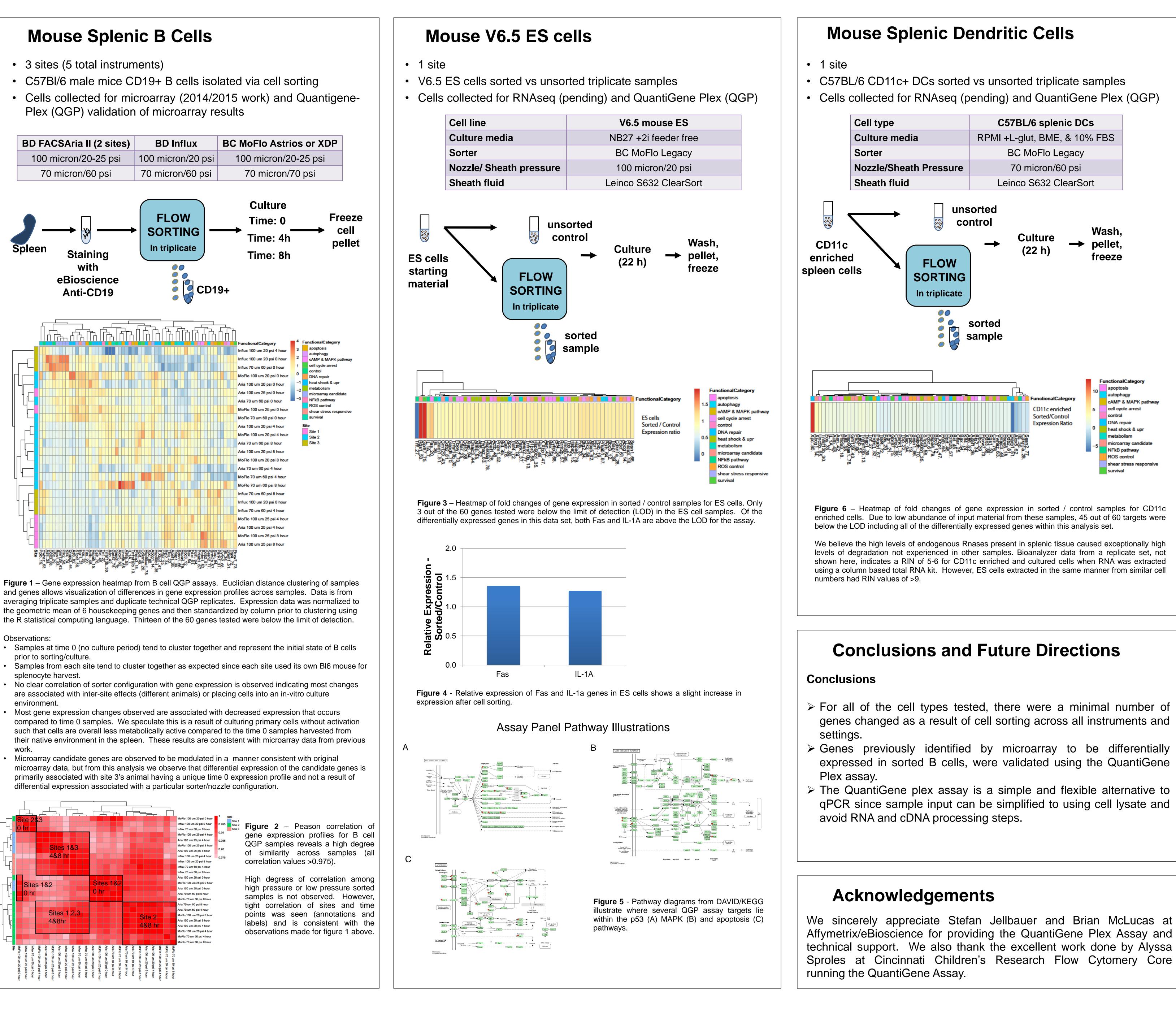

- Mouse B cell samples from a previous data set, ES cells and dendritic cells were evaluated for gene expression changes after cell sorting on different instruments using to the settings listed.
- Analysis was done using a custom QuantiGene 60-Plex assay designed to include genes previously found to be differentially expressed in B cells after sorting at different pressures (microarray candidate) and genes involved in cell stress pathways.

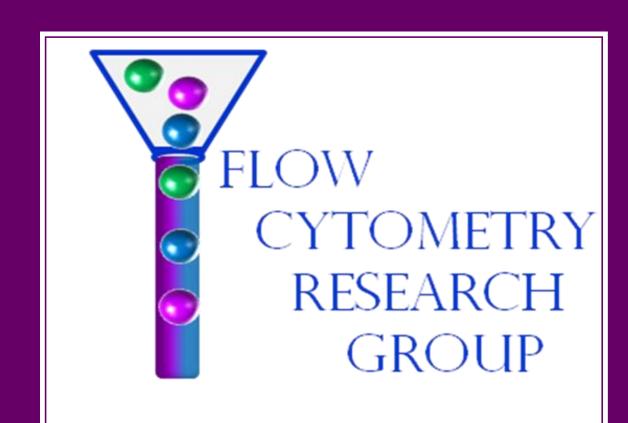
Symbol	Functional Category	Symbol	Functional Category	Symbol	Functional Catego
Aen	apoptosis	Hprt	control	Pank1	metabolism
Apaf1	apoptosis	Тbр	control	Abcg1	microarray candic
Вах	apoptosis	Ubc	control	Fos	microarray candio
Bbc3	apoptosis	Ywhaz	control	Gm129	microarray candic
Cflar	apoptosis	Ddb2	DNA repair	Klf4	microarray candic
Cyfip2	apoptosis	Polh	DNA repair	Plk2	microarray candic
Fas	apoptosis	Rrm2b	DNA repair	Rgs1	microarray candic
Phlda3	apoptosis	Хрс	DNA repair	S1pr3	microarray candic
Tnfrsf10b	apoptosis	Atf4	heat shock & upr	ll1a	NFkB pathway
Traf4	apoptosis	Atf6	heat shock & upr	116	NFkB pathway
Unc5b	apoptosis	Atf6b	heat shock & upr	Tnf	NFkB pathway
Xiap	apoptosis	Bid	heat shock & upr	Alox5	ROS control
Dram1	autophagy	Calr	heat shock & upr	Fdxr	ROS control
Prkab1	autophagy	Ddit3	heat shock & upr	Ppib	ROS control
Prdm1	cAMP & MAPK pathway	Dnajc3	heat shock & upr	Sesn1	ROS control
Btg2	cell cycle arrest	Hsp90aa1	heat shock & upr	Sesn2	ROS control
Cdkn1a	cell cycle arrest	Hsp90b1	heat shock & upr	Egr1	shear stress respo
Fbxw7	cell cycle arrest	Hspa4	heat shock & upr	Gpr87	survival
Actb	control	Hspa5	heat shock & upr	Tnfsf13b	survival
Gapdh	control	Xbp1	heat shock & upr	Triap1	survival

QuantiGene Custom 60-Plex

Note – The chosen genes within the apoptosis, autophagy, metabolism, cell cycle arrest, ROS control, DNA repair & survival categories are human p53 transcriptional targets. NFkB and cAMP/MAPK pathway genes were chosen as possible upstream and downstream transcriptional targets of microarray candidate genes.

QuantiGene Assay Workflow




Note – For lysates, cells were used at a concentration of $1500/\mu l$. For RNA, 100 ng was used for each replicate. Some replicates were pooled to achieve this amount.

Flow Cytometry Research Group 2015 Study

Evaluating the Effects of Cell Sorting on Gene Expression

Monica DeLay, Cincinnati Children's Hospital; Alan Bergeron, Dartmouth College; Andrew Box, Stowers Institute for Medical Research; Kathy Brundage, West Virginia University; Matt Cochran, University of Rochester Medical Center; Sridar Chittur, SUNY Albany; Peter Lopez, New York University Langone Medical Center; E. Michael Meyer, University of Pittsburgh Cancer Institute; Alan Saluk, The Scripps Research Institute; Scott Tighe, Vermont Cancer Center

