Mass Spectrometry of Glycans and Glycoproteins

Ron Orlando

Complex Carbohydrate Research Center
University of Georgia
Athens, GA 30602

Course Outline

Saturday Morning

7:00 am – 8:00 am Continental Breakfast

8:00 am – 8:30 am Introduction to Glycans, Glycosylation, Glycobiology

Ron Orlando

8:30 am – 9:00 am **Derivatization and Classical Carbohydrate Characterization**

- Ron Orlando

9:00 am – 10:00 am Issues related to Glycoproteins, and Glycan Biosynthesis

– Ron Orlando

10:00 am – 10:30 am **Morning Break**

10:30 am - 12:00 pm Glycoproteins -- Release and Analyze, and Glycorproteomic

Approaches - Ron Orlando

12:00 pm – 1:00 pm Lunch

Mass Spectrometry of Glycans and Glycoproteins

Course Outline

Saturday Afternoon

1:00 pm – 2:00 pm Glycopeptides and Methods for Site-specific Analysis

- Ron Orlando

2:00 pm – 3:00 pm Glycan Quantitation

- Ron Orlando

3:00 pm - 3:30 pm Afternoon Break

3:30 pm – 4:30 pm Bioinformatics of Glycans and Glycoproteins

- Marshall Bern

Mass Spectrometry of Glycans and Glycoproteins

ABRF Workshop 2013

Glycobiology: biology of sugars

Not just what we eat ...

Sugar metabolism and nutrition are not a major focus most of the time

It really focuses on things like cell-surface sugar structures (glycans) in complex settings like cell-cell recognition

Mass Spectrometry of Glycans and Glycoproteins

Glycobiology

Carbohydrates in Biological Systems

- Energy metabolism
- DNA, RNA
- Structural elements, e.g. chitin, cellulose, etc.

(Cellulose the most abundant organic compound on Earth)

- Glycoconjugates
 - Glycolipids
 - GPI anchors
 - Proteoglycans
 - Protein N- and O-linked glycosylation

Roles of glycoconjugates

- Protein stability, folding, trafficking (intra & extracellular)
- Modulation of protein activity, circulatory half-life
- Signaling
- Development
- Infection & Immunity

Mass Spectrometry of Glycans and Glycoproteins

ABRF Workshop 2013

Glycoproteins constitute
a large and
heterogeneous class of
glycoconjugates: most
secreted or membrane
bound/associate proteins
are glycosylated

The ABO blood group antigens are carbohydrates

The difference between A/B and O is the addition of one additional sugar while the difference between A and B is the identity of this "extra" sugar.

Mass Spectrometry of Glycans and Glycoproteins

Glycomics: the sugar version of genomics and proteomics

"The cell surface landscape is richly decorated with oligosaccharides anchored to proteins or lipids within the plasma membrane. Cell surface oligosaccharides mediate the interactions of cells with each other ..." Science 291:2337

Why is it so hard?

Glycosylation is the only protein modification requiring detailed structural characterization

Requires additional analytical and

informatics tools, and requires a systemsbased approach to understand properly.

ABRF Workshop 2013

Mass Spectrometry of Glycans and Glycoproteins

Glycosylation is Complex: Stereoisomers ⁶ CH₂ OH ⁶CH₂OH H, OH H, OH OH **D-Galactose D-Mannose** Stereochemical Centers Mass Spectrometry of Glycans and Glycoproteins ABRF Workshop 2013

Detailed Glycan Characterization

Information needed to solve structures:

Monomer ID Linkage positions (and branching points) Anomeric configurations Sequence

Two basic routes:

Bottom up - break it apart, and characterize the pieces Top down – keep it together, take it apart systematically

Often both approaches are needed

Mass Spectrometry of Glycans and Glycoproteins

ABRF Workshop 2013

Classical Methods

Composition Analysis – how much of which sugars are present Problems with sialic acids – decomposed by strong acid

Linkage Analysis – Identify which hydroxyl on each glycan is involved in a glycosidic bond

Data is for monomers – no sequence – only information on linkages to each sugars

Different experiments needed for neutral and amino sugars (HexNAc)

Mass Spectrometry of Glycans and Glycoproteins

Composition Analysis – samples with acidic sugars

Preparation of Trimethylsilyl (TMS) Methyl Glycosides* (CH₃)₃SiX (CH₃)₃SiX (CH₃)₃SiX + furanose forms OTHIS OCH₃

*allows detection of acidic sugars

Mass Spectrometry of Glycans and Glycoproteins

ABRF Workshop 2013

11

Composition Analysis – samples with acidic sugars

Preparation of Trimethylsilyl (TMS) Methyl Glycosides OHOOHOOHOOH HOOHOOHOOH CH3) TMSO TMSO TMSO OTMS OTMS OTMS OTMS OTMS OTMS OCH3 OTMS OCH3 OCH

Mass Spectrometry of Glycans and Glycoproteins

ABRF Workshop 2013

Composition Analysis

Preparation of Alditol Acetates

Mass Spectrometry of Glycans and Glycoproteins

Determination of the Stereochemical Configuration of Glycosyl Residues

2,3,4,6-tetra- *O*-trimethylsilylmethyl -D-glucoside 2,3,4,6-tetra- *O*-trimethylsilylmethyl -L-glucoside

ÇH₂OTMS

Enantiomers: Identical physical properties, unable to separate.

2,3,4,6-tetra- *O*-trimethylsilyl-2-(-)-butyl -D-glucoside

2,3,4,6-tetra- *O*-trimethylsilyl-2-(-)-butyl -L-glucoside

Diastereomers: Different physical properties, able to separate.

Mass Spectrometry of Glycans and Glycoproteins

ABRF Workshop 2013

Mass Spectrometry of Glycans and Glycoproteins

Merkle and Poppe (1994) Methods Enzymol. 230: 1-15; York, et al. (1985) Methods Enzymol. 118:3-40.

Mass Spectrometry of Glycans and Glycoproteins

Problems with Glycans/Glycoproteins

- Poor Ionization efficiency
 - large mass increase
 - no sites for protonation
 - sometimes has a negative charge
 - hydrophobicity
 - Transparent
- Heterogeneity
- Large size

Mass Spectrometry of Glycans and Glycoproteins

ABRF Workshop 2013

Other useful Derivatizations

Depolarizing Derivatization Reactions for MS

Peracetylation

Pyridine/Acetic Anhydride, RT/overnight

Pertrimethylsilylation

Pyridine/BSTFA/TMCS, RT/half hour

Permethylation

Suspension of NaOH in dry DMSO
add to dry glycan(s)
Methyl Iodide
add after ~2 hrs
Chloroform/Water extraction, several washes, dry

Mass Spectrometry of Glycans and Glycoproteins

Why Permethylate the Oligosaccharide?

The mass increase is not too much to shift the mass to higher mass range and decrease sensitivity.

It increase the sensitivity of oligosaccharides for subsequent MS analysis. "Equalizes" the MS response for different glycans

It allows for diagnostic molecular ions which are easier to interpret than the native oligosaccharides.

Stabilizes negatively charged sugars (sialic acids for example)

Makes tandem mass spectra more interpretable

Mass Spectrometry of Glycans and Glycoproteins

ABRF Workshop 2013

Other useful Derivatizations: Reductive Amination

Mass Spectrometry of Glycans and Glycoproteins

Heterogeneity: the quality or state of being heterogeneous **Heterogeneous:** consisting of dissimilar or diverse ingredients

No two cars are ever exactly the same, and the sequence in which they are produced must be carefully controlled to minimize resource utilization. For some of the larger options, the structure of the assembly must be adapted.

M. Dincbas, H. Simonis, and P. van Hentenryck. Solving the car-sequencing problem in constraint logic programming. In Y. Kodratoff, editor, Proceedings ECAI-88, pp. 290–295, 1988

Mass Spectrometry of Glycans and Glycoproteins

Questions?

Mass Spectrometry of Glycans and Glycoproteins