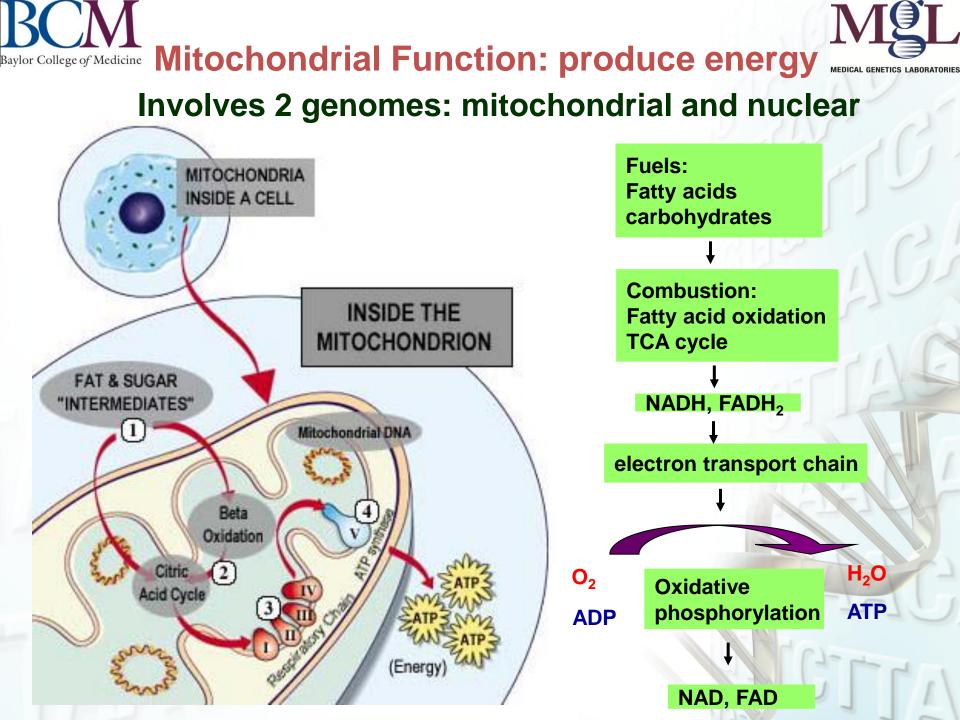


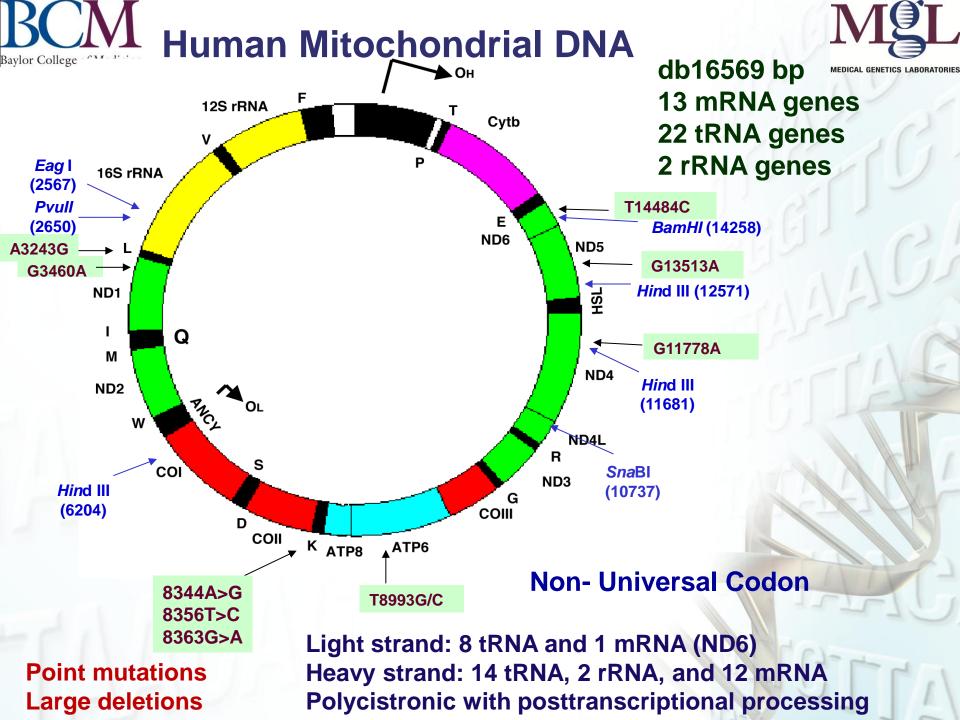
Next Generation Sequencing Analyses of Complex Dual Genome Mitochondrial Disorders: Technical Approach

ABRF Satellite Workshop Palm Springs, CA March 2, 2013


Lee-Jun C. Wong, Ph.D. Molecular and Human Genetics Baylor College of Medicine Ijwong@bcm.edu

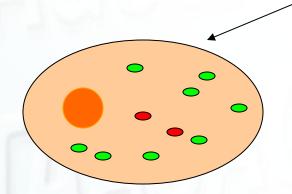
content:

- 1.Application of NGS to molecular diagnosis
- of mitochondrial disorders: nuclear genes and mitochondrial genome
- 2.Validation and Quality control of Clinical tests
- 3.Types of mutations detected: point mutations, small indel, large deletions? 4.Target nuclear gene capture/sequencing 5.Mitochondrial genome: long range PCR of the whole mitochondrial genome



Mitochondrial Disorders: Disease of Energy Deficiency Respiratory chain defect Defects in oxidative phosphorylation

Preferentially affect tissues of high energy demand Major clinical manifestation: neuromuscular phenotype CNS, Brain, skeletal muscle, heart, liver, etc.



Homoplasmy and Heteroplasmy

- 0 or 100%
- Heteroplasmy
 - Between 0-100%

Complex dual genome mitochondrial disorders:

- •mtDNA biosynthesis+integrity maintenance
 •Salvage synthesis of dNTP
 •Complex assembly/Complex subunits
 •Transcription/translation factors
 •MRPLs/MRPSs (mito ribosomal proteins)
 •Transcription and translation factors
 •Mitochondrial aa-tRNA synthetases
- •TIMMs and TOMMs, protein transporters •dynamic fusion/fission proteins

Apoptotic factors, protein kinases

- Majority of mitochondrial disorders are caused by Defects in nuclear genes
- 1500 nucear genes targeted to mitochondria Currently about 200+ linked to known diseases

Current Approaches: step-wise

- 1. Screen for mtDNA common point mutations: by PCR/ASO or other detection methods
- 2. mtDNA deletion: by Southern analysis
 3. Quantification of heteroplasmic mtDNA point mutations: ARMS qPCR
- 4. Determination of mtDNA deletion and breakpoints: aCGH, PCR sequencing
- 5. Unknown mutations: sequence the whole mitochondrial genome by Sanger
- 6. mtDNA depletion: qPCR analysis for mtDNA copy number
- 7. Sequence relevant nuclear genes, one by one
- 8. aCGH to detect large deletions in nuclear genes

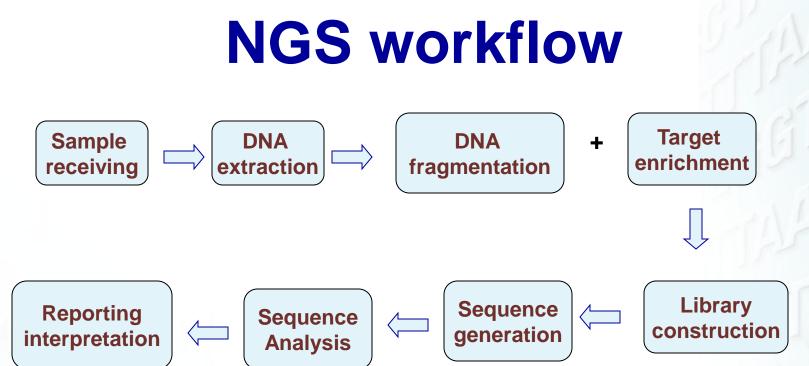
Gold Standard Sanger Sequencing

Pitfalls

- 1. Does not provide quantitative information
- 2. Sequence gene one by one
- 3. Does not detect deletions
- 4. Tedious and costly
- 5. Not comprehensive

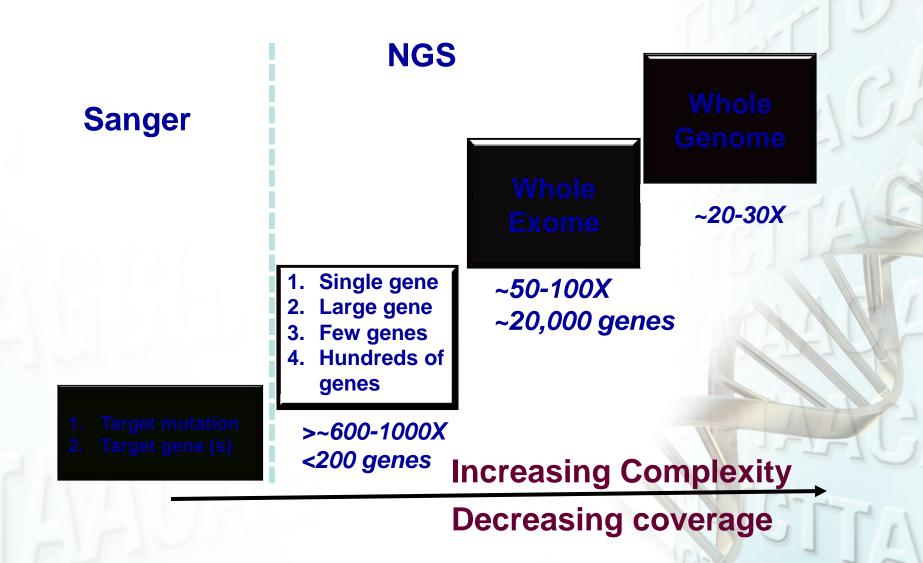
Mitochondrial Challenges

1. The most clinically and genetically heterogeneous dual genome disorders 2. Primary defects in mitochondrial genome, common point mutations and large deletion 3. Quantification of mutation heteroplasmy 4. Majority (90%) of mitochondrial disorders are caused by one of ~1500 nuclear genes 5.Advances in technologies for diagnosis of complex disorders: array CGH and next generation sequencing approach

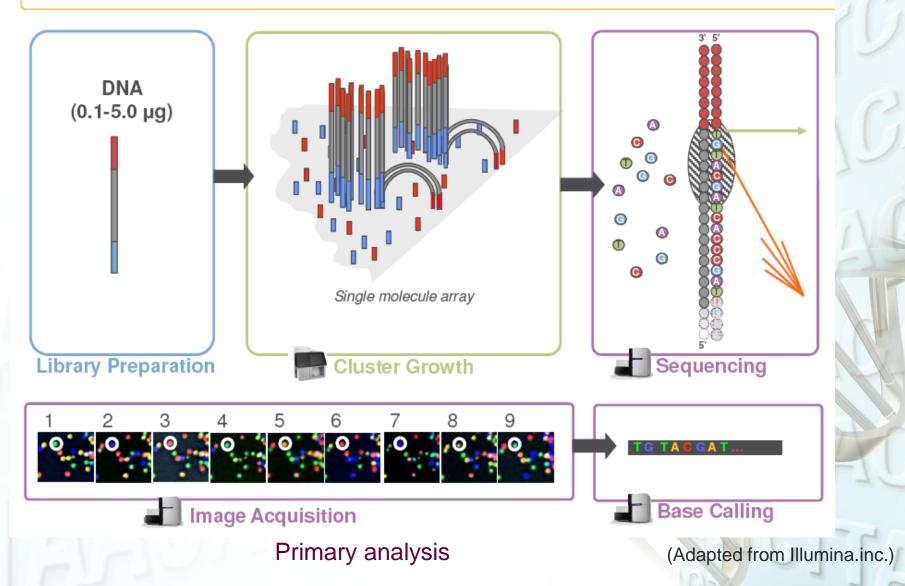


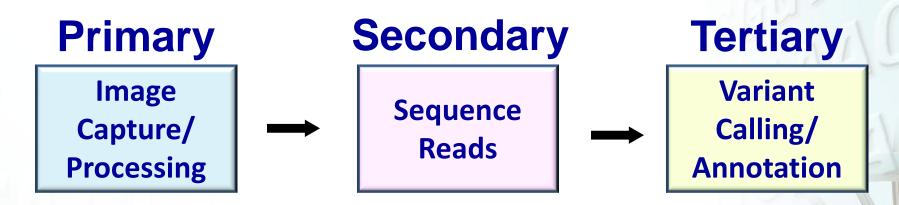
Next Generation Massively Parallel Sequencing

- 1. Ability to sequence many genes in parallel
- 2. Identify new mutations in known genes
- 3. Discover new disease genes
- 4. Detect point mutations, small indels and large deletion/duplication (CNV)
- 5. Quantify mtDNA heteroplasmy, mosaicism
- 6. RNA sequencing, Gene expression 7. Quantitative DNA methylation analysis



Quality control procedures are required to assure that each step works properly and results are accurate for each patient's specimen analyzed


Bring NGS to Clinical Diagnosis


Illumina Sequencing Technology Overview

sequence analysis: three steps With built-in QA/QC samples

Convert image to base calls Base quality scores assigned Filtering of reads Based on quality Alignment / Assembly

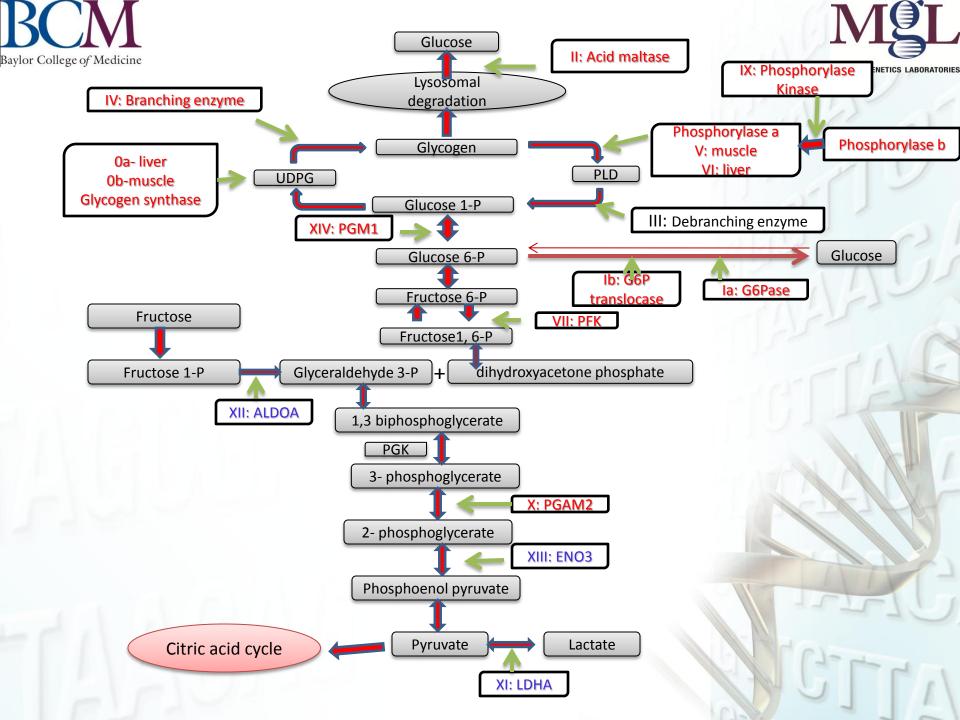
Results interpretation

To bring NGS to clinical settings requires

- 1. Validation:
- Cover all bases in all CDS + 20 bp in flanking introns all mutations/VUS confirmed by a second method
- Phase I: specificity, sensitivity, reproducibility, accuracy, compared to Sanger
- Phase II: detection of different mutation types using positive control samples
- Phase III: Blinded Samples without molecular diagnosis to obtain diagnostic yield
- 2. Define experimental error, limit of detection, alignment and analytical steps
- 3. Variants interpretation and reporting

Nuclear Genes Capture Sequencing

- 1. Genes responsible for mtDNA Depletion and maintenance of integrity
- 2. GSD (liver and muscle forms)
- 3. Complex I-V panel, CoQ panel
- 4. Usher panel
- 5. PDH panels
- 6. Metabolic myopathy
- 7. RP (retinitis pigmentosa) panel 66 genes
- 8. Mitome200
- 9. Mitome500
- 10.Mitome1500
- 11.Exome
- **12.Whole Genome**

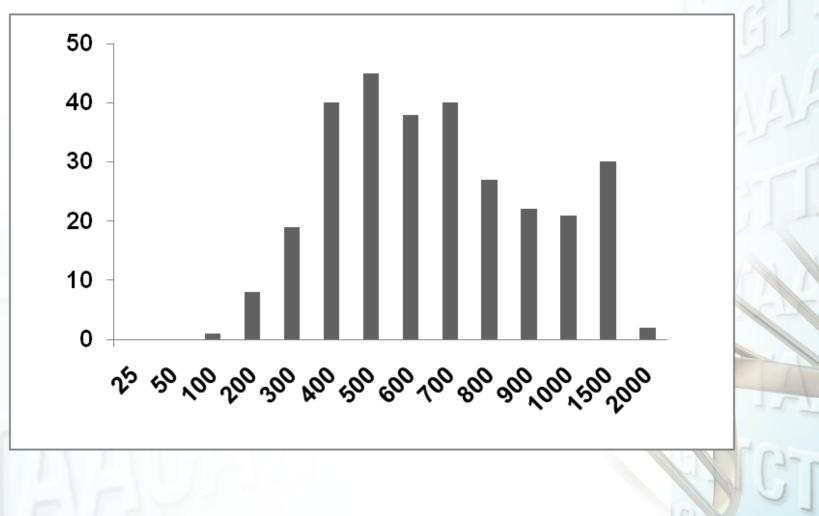

Fully covered, fully validated by Sanger

Example of Nuclear Gene Capture Sequencing

1. Panel testing: NGS analysis of a group of genes involved in Glycogen Metabolism: synthesis and breakdown Glycogen Storage Disorders (GSD)

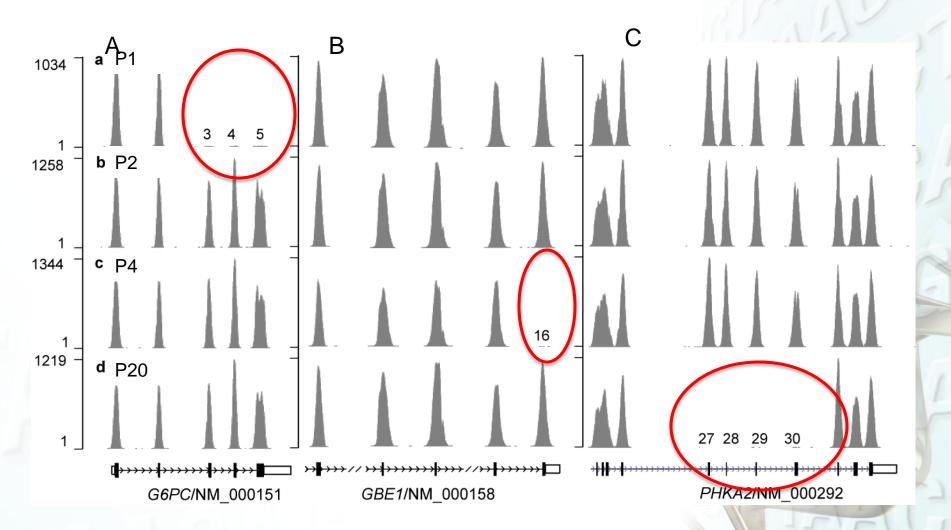
Genes involved in Glycogen Metabolism

GSD Types	Genes	Liver Panel	Muscle panel	NM#
GSD 0A	GYS2	\checkmark		NM_021957.3
GSD 0B	GYS1		\checkmark	NM_002103.4
GSD IA	G6PC	\checkmark		NM_000151.2
GSD IB	SLC37A4	\checkmark		NM_001467.5
GSD II	GAA	\checkmark	\checkmark	NM_000152.3
GSD III	AGL	\checkmark	\checkmark	NM_000642.2
GSD IV	GBE1	\checkmark		NM_000158.3
GSD V	PYGM		\checkmark	NM_005609.2
GSD VI	PYGL	\checkmark		NM_002863.4
GSD VII	PFKM		\checkmark	NM_000289.5
GSD IX A	PHKA2	\checkmark		NM_000292.2
GSD IX B	РНКВ	\checkmark	√, mild	NM_000293.2
GSD IX C	PHKG2	\checkmark		NM_000294.2
GSD IX D	PHKA1		\checkmark	NM_002637.3
GSD X	PGAM2			NM_000290.3
GSDXIV	PGM1		\checkmark	NM_002633.2



4	
NGS Panel name	GSD-16gene-panel
Genes included	AGL, G6PC, GAA, GBE1, GYS1, GYS2, PFKM, PGAM2, PGM1, PHKA1, PHKA2, PHKB, PHKG2, PYGL, PYGM, SLC37A4 (16 genes)
Number of CDS	294
Target size	50,062 bp (CDS ± 20 bp)
Enrichment	In solution capture library
Sequencing info	Illumina HiSeq 2000, 75 cycle, single-end

Minimal coverage per base of Exons


Phase I Validation: known samples

Sample ID	Mean coverage	Total reads Per 100 bp	Min coverage	# of CDS < 20X	Multiplexing factor	1
547	722±233	988±317	68	0	8	
755	837±195	1146±266	77	0	8	
700	783±187	1072±255	93	0	8	
833	803±189	1099±258	74	0	8	
264	686±225	939±306	47	0	8	
041	841±220	1151±300	51	0	8	
203	747±238	1021±324	92	0	8	
941	674±220	921±299	1/92	3	8	
545	731±230	1004±313	77	0	8	
206	727±243	998±330	1/77	1	8	
067	706±228	971±311	93	0	8	
504	623±177	856±244	59	0	8	
531	850±345	1169±418	69	0	8	1
255	878±267	1028±355	93	0	8	

GSD1A negative

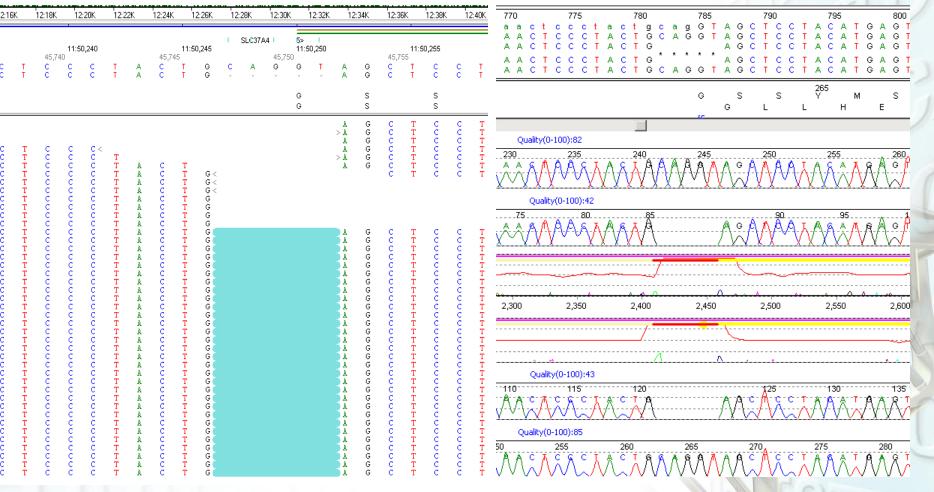
Patients	Age	Gender	Clinical Indication
24547 P8	4m	Μ	hypoglycemia, hepatomegaly
28755 P9	13yr	F	fat,encephalopathy, abnormal liver function
30700 P10	1.5yr	F	hyperlipidemia, hyperlactatemia,ftt, hepatomegaly
31833 P11	10m	F	hypoglycemia, hepatomegaly
34264 P12	3yr	Μ	hypoglycemia, hyperuricemia, reccurent infections, bone fractures
36041 P13	3m	F	pulmonary hypertension, large liver, elevated lipids/uric acid/lactate
37203 P14	2yr	М	Hepatomegaly

NGS results summary

Patient	Gene	CDS	exons	mutations
		5	6	c.817G>A (p.G273S)
30700 P10	SLC37A4	7	0	c.1042_1043delCT
		7	8	(p.L348Vfs*53)
	01 0074 (5	6	c.785-3_786del5
31833 P11	SLC37A4	5	6	c.785-3_786del5
		2	4	c.256C>T (p.Q86X)
37203 P14	AGL	20	22	c.2723T>G (p.L908R)

c.817G>A (p.G273S): conserved from C. elegans to human, predicted to be deleterious.

c.2723T>G (p.L908R): conserved from yeast to human, predicted to be deleterious.



P10 SLC37A4 c.1042_1043delCT het

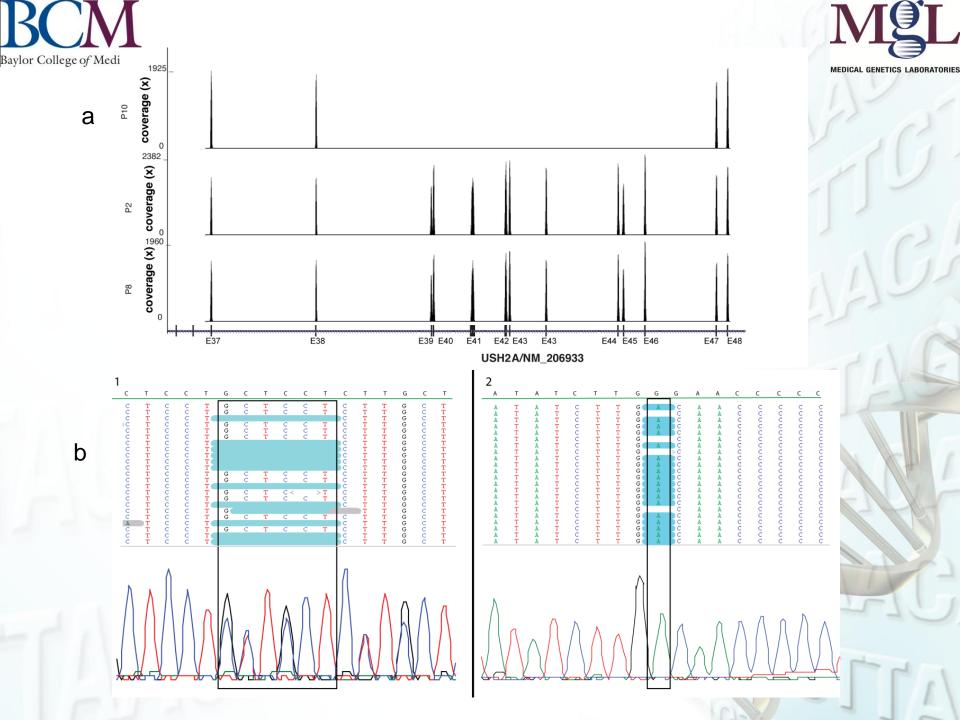
	11:51,655 11:51,660 47,160 G C C C C A T T G C C C C A T T	I I 11:51,665 11:51,67 47,165 47,170 G C C C T G T T T G C C C - G T T T	SLC37A4 0 11:51,675 47,175 G G A G T C A G G A G T C A	1030 1035 1040 1045 1050 1055 A T G G C C C C A T T G C C C T G T T T G G A G T C A T A G A T G G C C C C A T T G C C C T G T T T G G A G T C A T A G A T G G C C C C C A T T G C C C T G T T T G G A G T C A T A G A T G G C C C C C A T T G C C S T K T K K R G W S W Y A K M S R T R K S S C C M Y W K Y S C Y G T T T G G A G T C A T A G A T G G C C C C C A T T G C C S T K T K K R G W S W Y A K M S R T R K S S C C M Y W K Y S C Y G T T T G G A G T C A T A G A T G G C C C C C A T T G C C C T G T T T G G A G T C A T A G
	345 G P I G P I	A L F A L F	350 G V G V	Y G P I A L F G V I Y G P I A L F G V I
35	G C C C C A T T G C C C C A T T G C C C C A T T	G C C < G C C < G C C < G C C <		exon_8_F_Synthesis_1032.scf-> Quality(0-100):77
40	G C C C C A T T G C C C C A T T	G C C < G C C < G C C C G C C <		:37A4-E9F_2011-12-30_D02.ab1> Quality(0-100):0 230 235 240 245 250 55 40 40 40 44 66
45	G C C C C A T T G C C C C A T T	G C C< G C C< G C C< G C C< G C C<		2028 95.75 55.00.20.00.00.00.70 87.30.00.00.00.25.20.95 8.07.20.75 1104 (448)274 1041 (2248) 1840 1877 872 1226 880 1236 1 100 000 010 010 010 010 010 010 010 010
50	G C C C C A T T G C C C C A T T	G C C C T G T T T G C C C T G T T T	G G A G T C A G G A G T C A	3,240 3,260 3,280 3,300 3,320 3,340 3,360 3,380 3,400 3,420 3,440 3,460 3,480 3,500 3,520 1.21 49,4000 1000 0004 49,400 000 000 000 000 000 000 000 000 000
55	G C C C C A T T G C C C C A T T	G C C C T G T T T G C C G T T T	G G A G T C A G G A G T C A	37A4-E9R_2011-12-30_D08.ab1< Quality(0-100):0 300 305 310 315 320 325 Image: R_K_S_S_A_M_X_W_K_Y_S_C_Y_A_T_T_T_A_A_A_A Image: R_K_S_S_A_M_X_W_K_Y_S_C_Y_A_T_T_T_A_A_A_A Image: R_K_S_S_A_A_A_A_A Image: R_K_S_S_A_A_A_A Image: R_K_S_S_A_A_A_A Image: R_K_S_S_A_A_A_A Image: R_K_S_S_A_A_A Image: R_K_S_S_A_A Image: R_K_S_S_A_A
60	G C C C C A T T G C C C C A T T	G C C C T G T T T G C C C T G T T T	G G A G T C A G G A G T C A	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
65	GCCCCATT	G C C G T T T	GGAGTCA	

P11: SLC37A4

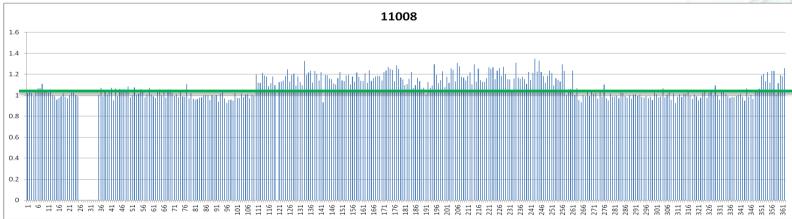
GSD by panel NGS diagnostic yield: >65%

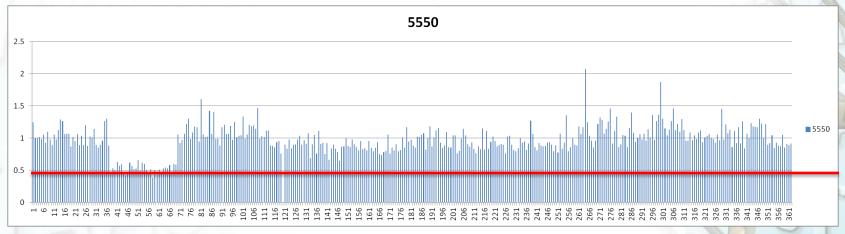
Usher syndrome

Hearing loss and retinitis pigmentosa USH1, USH2, USH3 9 huge genes Clinical overlap


By NGS: diagnostic yield is >83% 10/12 found 2 deleterious mutant alleles 2/12: one heterozygous allele

Usher syndrome


NGS Panel name	Ushe	Usher panel-2195						
Genes included		9 nuclear genes: CDH23, CLRN1, DFNB31, GPR98, MYO7A, PCDH15, USH1C, USH1G, USH2A						
Number of CDS	362CI	362CDS						
Target size	81,17	0 bp (CD	S ± 20 bp))				
Enrichment	In sol	ution cap	ture libra	ary				
Sequencing info Illumina HiSeq 2000, 75 cycle, single-end								
Sample ID#	1	2	3	4	5	6	7	8
Mean covera ge / base	749± 235	1564± 499	902± 297	1636± 539	1623 ± 505	1433± 515	1345± 425	1627± 536
Number of CDS <	4	3	4	4	3	4	3	3



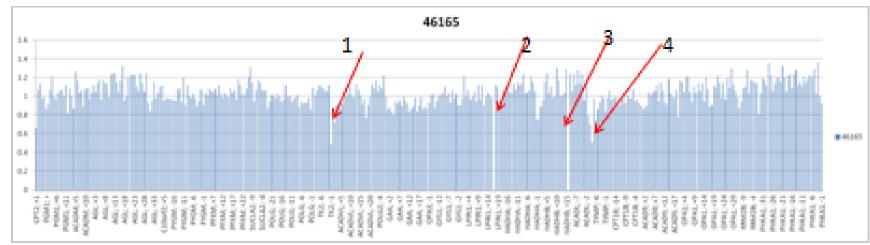
NGS detects large deletions (CNV) Usher panel (previously not identified) USH2A: CDS38-46 homozygous del

USH2A: CDS3-34 heterozygous deletion.

Abnormal Bone Mass related disease

High Bone Mass Panel (14 genes) ANKH, CA2, CLCN7, CTSK, FAM123B, FAM20C, LEMD3, OSTM1, SOST, TCIRG1, TGFB1, TNFRSF11A, TNFSF11, TYROBP

Low Bone Mass Panel (21 genes) ALPL, B4GALT7, COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, CRTAP, FBN1, FKBP10, LEPRE1, PLOD2, PLOD3, PPIB, SERPINF1, SLC34A1, SLC39A13, SLC9A3R1, SP7, TNFRSF11A, TNFRSF11B


Abnormal Bone Mass related disease

NGS Panel name	Skeletal panel						
Genes included	•	34nuclear genes including highbonemass-panel +lowbonemass-panel					
Number of CDS	602 CDS						
Target size	98962bp (CDS ± 2	0 bp)					
Enrichment	In solution capture	e library					
Sequencing info	Illumina HiSeq 200 single-end	00, 75 cycle,					
5	Mean coverage per base	# of Exons base cove (Exe	ered <20X				
Panel	663x	20	3.3%				
Reduced coverage		134	22.1%				

BCM

1:TK2, E1: GC-rich. Capture not consistent between samples

2: LPIN1: E18 homozygous deletion

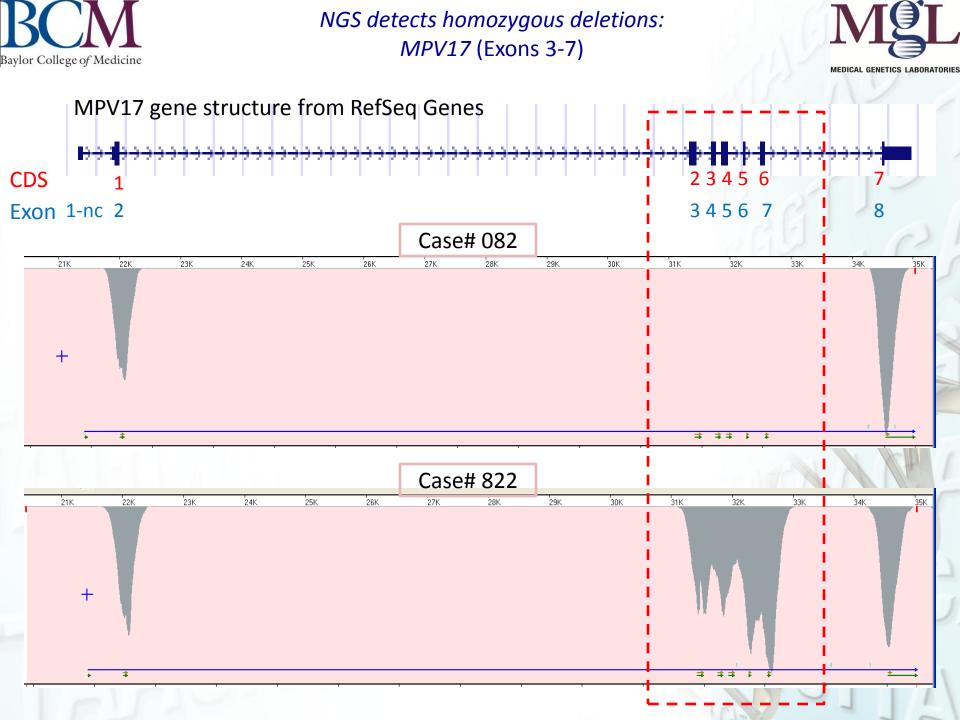
3: ACADL:E1: many probes but consistently among samples never been captured and sequenced to sufficient depth

4: TYMP, CDS7-9 (E8-E10): low coverage

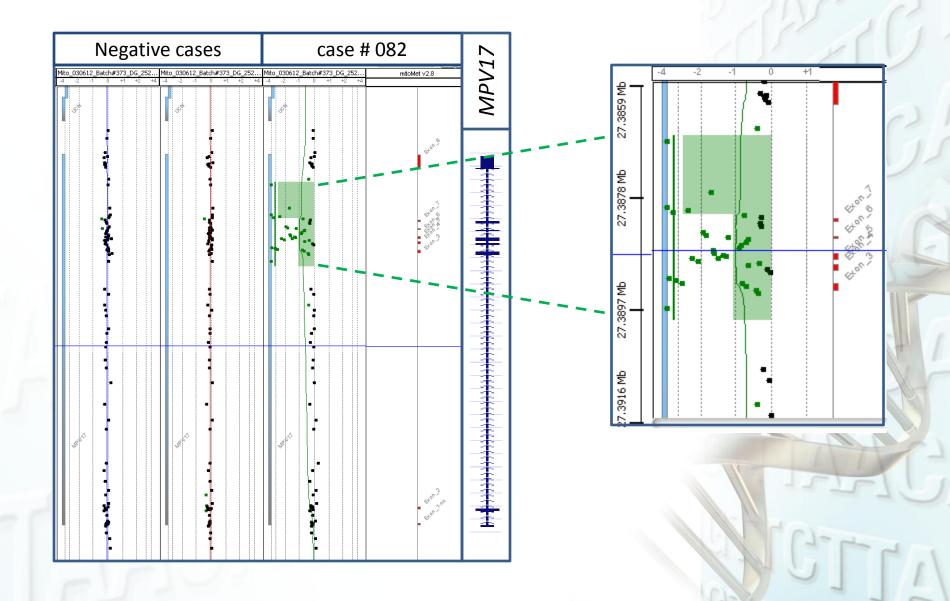
NGS Panel testing)

Tests	number of genes	# cds	target size (bp)	cds needs PCR/Seq
GSD	16	294	50,062	0
Usher Synd	9	363	81,171	4
Bone-High				11/1
Mass	14	129	27,318	13
Bone-Low				1055
Mass	20	432	67,419	6
Myopathy/ rhabdomyolysis	26	401	70,178	4
RP	66	939	202,800	16
mtDNA				
Depletion	14	145	26,537	4
Mitome200	162	1,788	307,144	31

Mitochondrial Disease: a Complex Dual Genome Disorders **Genetically and Clinically Heterogeneous** Mitochondrial Genome: 16.6 kb **Point mutations: common, novel** % mutant loads: heteroplasmy large mtDNA deletions copy number changes: mtDNA depletion Nuclear Genes: ~ 1,300 genes Most commonly autosomal recessive Severe, present at early age of life **Point mutations and large deletions Autosomal dominant, X-linked**

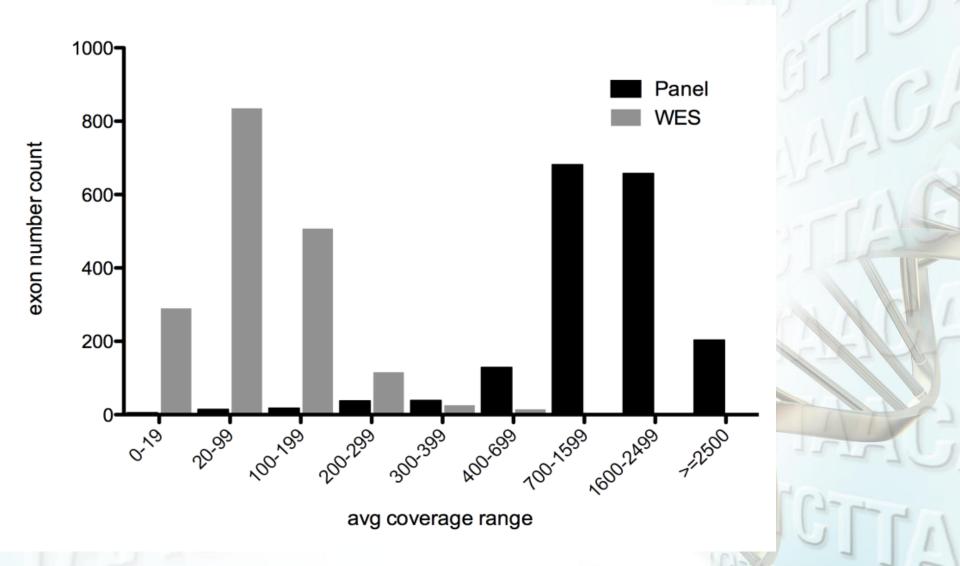

Mitochondrial Disease: a Complex Dual Genome Disorders **Genetically and Clinically Heterogeneous** Nuclear Genes: ~ 1,500 genes specific panels: depletion complex subunits and assembly genes aa tRNA synthetases Mitome200 Mitome 500 Mitome1500 **Exome** Whole genome

Example

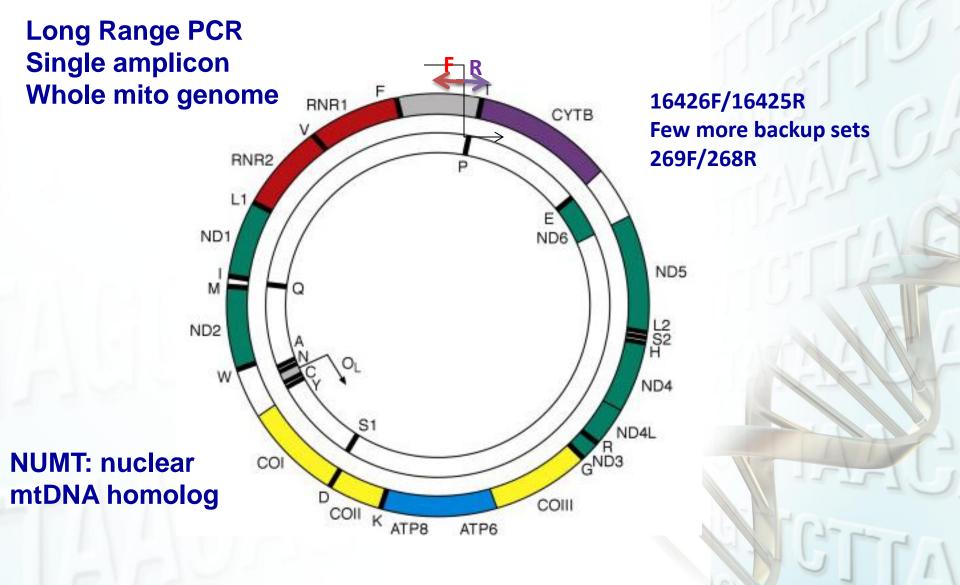

- 11 month old girl
- Presented with hepatomegaly and hypoglycemia
- Previous tests revealed:
 - mtDNA depletion in liver: 9% of control
 - Whole mitochondrial genome sequencing is unremarkable

Deletions in MPV17 are confirmed by arrayCGH

Mitome200

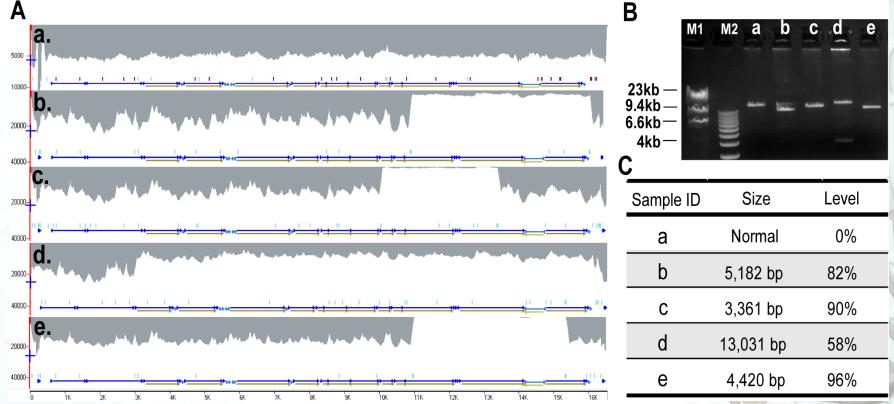

NGS Panel name	Mitome200
Genes included	162 nuclear genes related to mito diseases
Number of CDS	1,789
Target size	308,281 bp (CDS ± 20 bp)
Enrichment	In solution capture library
Sequencing info	Illumina HiSeq 2000, 75 cycle, single-end

	Mean coverage per base	one base <2	ons with e covered 20X xon)	# of bases covered <20X (Base)		
Panel	1569x	14	0.78%	1,107	0.36%	
Low coverage	92x	499	27.89%	61,626	19.99%	


Mitome200 vs low coverage exomes

Next Generation deep seq 1 pair of primers to avoid NUMT

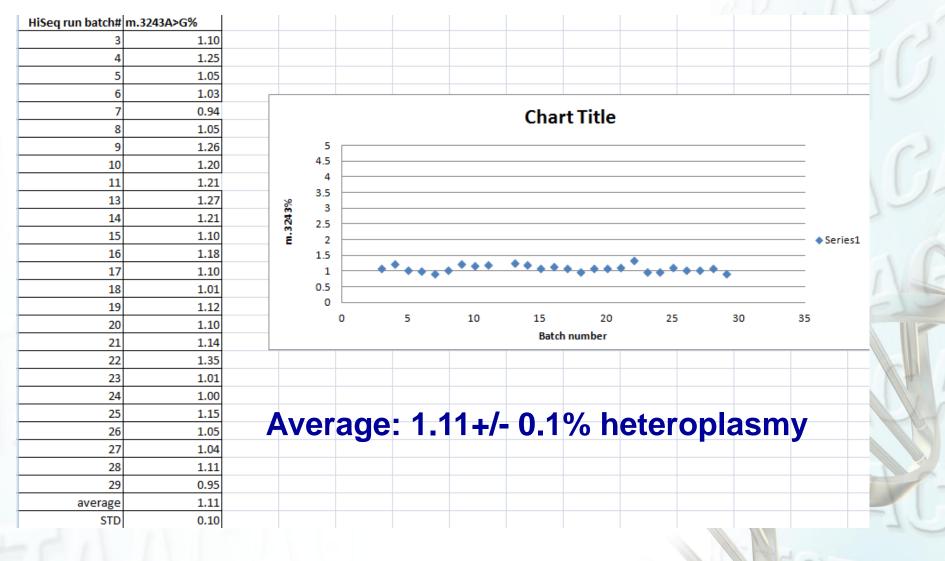
Sensitivity and specificity


	NGS				Sanger	NGS		
ID#	ТР	FN	TN	FP	Positives	Sensitivity (%)	Specificity (%)	
309	15 (1het)	0	16,554	0	14	100	100	
286	15	0	16,554	0	15	100	100	
964	41	0	16,528	0	41	100	100	
614	45	0	16,524	0	45	100	100	
798	37	0	16,531	0	37	100	100	
914	16 (1het)	0	16,553	0	16	100	100	
085	38	0	16,531	0	38	100	100	
799	32	0	16,537	0	32	100	100	
926	37	0	16,532	0	37	100	100	
563	46	0	16,523	0	46	100	100	
889	23 (1het)	0	16,546	0	22	100	100	
820	40	0	16,529	0	40	100	100	
Sum	385	0	198,442	1	383	100%	100%	

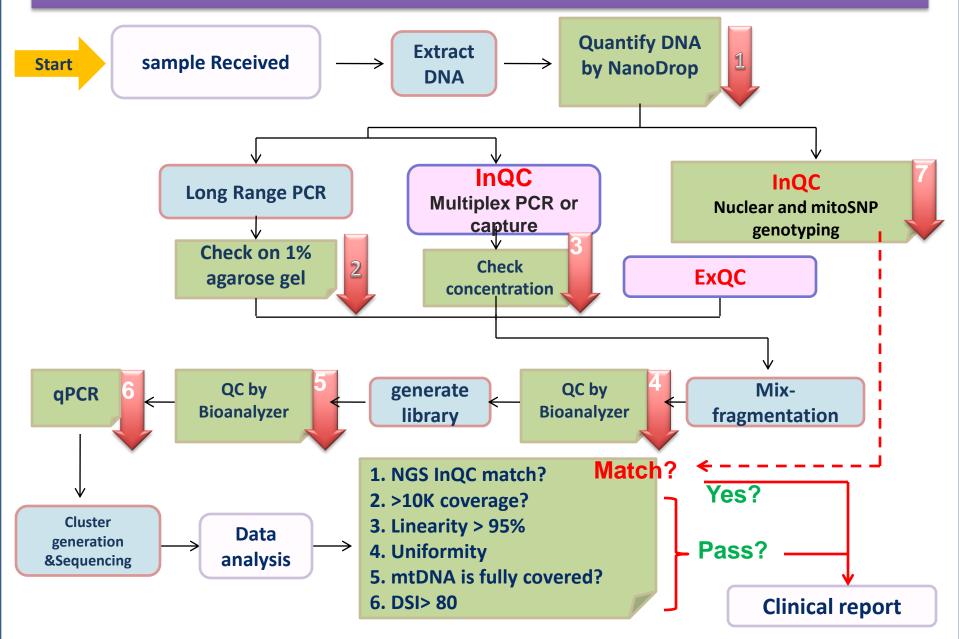
>500 samples analyzed by MPS so far

Detection of mtDNA deletions by whole mtDNA amplification followed by NGS

Deletions are confirmed by MitoMet array CGH and PCR/sequencing


BCM Baylor College of Medicine Quantification of heteroplasmy

		Base	Heteroplasmy (%)		
ID#	Position	change	NGS	qPCR	
263	normal		NA	ND	
062	m.3243	A>G	1.1	3	
367	m.3243	A>G	2.3	8	
030	m.3243	A>G	6.8	16	
085	m.3243	A>G	11	32	
362	m.3243	A>G	27	50	
761	m.3243	A>G	36	48	
074	m.3243	A>G	68	95	
626	m.8344	A>G	84	73	
611	m.8344	A>G	86	82	
926	m.8993	T>C	88	87	
799	m.10191	T>C	28	ND	
994	m.11778	G>A	90	83	
027	m.11778	G>A	91	91	
285	m.13513	G>A	37	84	
487	m.13513	G>A	54	95	
563	m.14484	T>C	45	20	



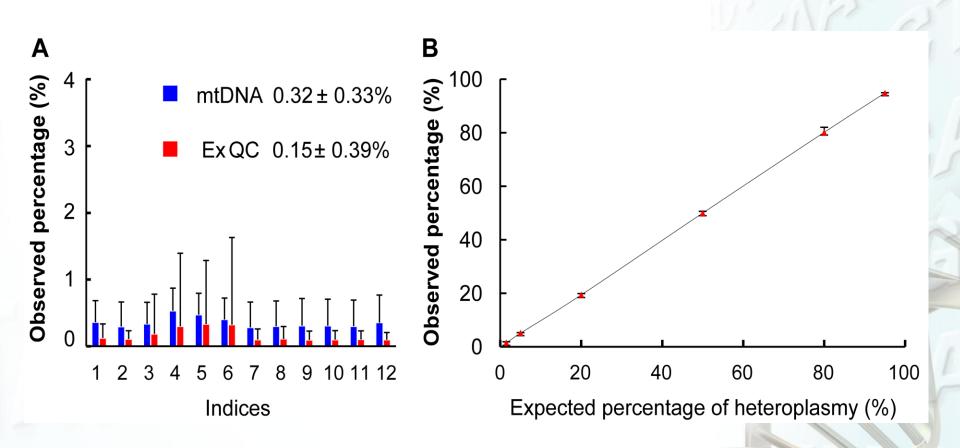
Spike-in 1.1% positive control

Mito genome and Mitome NGS QA/QC workflow

"External quality control for each indexed sample"

Spike in: 7 fragments with different codons at 6 different sites on phage DNA sequence

	10	20	30	40	50	60	70
	1	1	1	1	1	1	1
6_MITNGS_4	ATGAGAGTAATCT	GTGCTCTGGCA	AT GCTAACO	GCGGTAAGTGG	, <mark>ata</mark> ggtact	CTCGGCGGT	ggc <mark>act</mark> ttcctc
7 MITNGS 1	ATGAGAGTAATCT	GTGCTCTGGCA	TAGGCTAACC	GCCGGTAAGTGC	, <mark>ata</mark> ggtact	CTCGGCGGT	ggc <mark>act</mark> ttcctc
5 MITNGS 15	ATGAGAGTAATCT	GTGCTCTGGCA	AT GCTAACO	GCGGTAAGTGG	<mark>ATT</mark> GGTACT	CTCGGCGGT	ggc <mark>act</mark> ttcctc
4 MITNGS 30	ATGAGAGTAATCT	GTGCTCTGGCA	AT GCTAACO	GCGGTAAGTGG	ATTGGTACT	CTCGGCGGT	ggc <mark>acg</mark> ttcctc
1_MITNGS_500	ATGAGAGTAATCT	GTGCTCTGGCA	AT GCTAACO	GCGGTAAGTGG	ATTGGTACT	CTCGGCGGT	ggc <mark>acg</mark> ttcctc
2_MITNGS_300	ATGAGAGTAATCT	GTGCTCTGGCA	AT GCTAACO	GCCGGTAAGTGG	att <mark>ggtact</mark>	CTCGGCGGT	ggc <mark>acg</mark> ttcctc
3_MITNGS_150	ATGAGAGTAATCT	GTGCTCTGGCA	AT GCTAACO	GCCGGTAAGTGG	att <mark>ggtact</mark>	CTCGGCGGT	ggc <mark>acg</mark> ttcctc
	MRVI	CALA	M/-AN	GGKW	I/I G T	L G G	G <mark>T/T</mark> F L
	85	95	105	115	125	135	145
	l I	l I	l I	I	I	I	I I
6_MITNGS_4	GACTGGGAGATTA	CCGTCTGCCTG	TCCGAGTTC	ACC <mark>AAT</mark> AACACI	GGT TACGCC	TCCGTCTGC(CACGCTAACGGT
7_MITNGS_1	GACTGGGAGATTA	CCGTCTGCCTG	TCCGAGTTC	ACC <mark>AAT</mark> AACACI	GGT TACGCC	TCCGTCTGC(CACGCTAACGGT
5_MITNGS_15	GACTGGGAGATTA	CCGTCTGCCTG	TCCGAGTTC	ACC <mark>AAT</mark> AACACI	GGT TACGCC	TCCGTCTGC(CACGCTAACGGT
4_MITNGS_30	GACTGGGAGATTA	CCGTCTGCCTG	TCCGAGTTC	ACC <mark>AAT</mark> AACACI	GGT TACGCC	TCCGTCTGC(CACGCTAACGGT
1_MITNGS_500	GACTGGGAGATTA	CCGTCTGCCTG	TCCGAGTTC	ACC <mark>AAC</mark> AACACI	GGGTACGCC	TCTGTCTGC(CACGCTAACGGT
2_MITNGS_300	GACTGGGAGATTA	CCGTCTGCCTG	TCCGAGTTC	ACC <mark>AAC</mark> AACACI	GGGTACGCC	TCCGTCTGC(CACGCTAACGGT
3_MITNGS_150	GACTGGGAGATTA	CCGTCTGCCTG	TCCGAGTTC	ACC <mark>AAC</mark> AACACI	" <mark>GGT</mark> TACGCC	TCCGTCTGC(CACGCTAACGGT



Spike in Quantitative control standards: for every sample

						0.10%	0.50%	2.00 %	5.00 %	20.00%	50.00 %
х	Ι	т	W	G	S	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%
м/х	Ι	т	W	G	S	0.40%	0.40%	0.40%	0.40%	0.40%	0.40%
м/х	I/I	т	W	G	S	1.50%	1.50%	1.50%	1.50%	1.50 %	1.50 %
м/х	I/I	т/т	W	G	S	3%	3%	3%	3%	3%	3%
м/х	I/I	т/т	w/w	G	S	15 %	15 %	15%	15%	15%	15 %
м/х	I/I	т/т	W/W	G/G	S	30 %	30 %	30 %	30 %	30%	30 %
м/х	I/I	т/т	W/W	G/G	s/s	50 %	50 %	50 %	50 %	50 %	50 %
						99.90 %	99.50 %	98.00 %	9 5.00 %	80.00%	50.00 %
						м/х	I/I	т/т	W/W	G/G	s/s

Limit of detection~ 1.5%

Conclusion

1.Bringing NGS to clinical dx lab is practical. Proper QA/QC procedures should be instituted according to CLIA/CAP guidelines 2. Target gene capture/NGS: all procedures should be validated and positives confirmed 3.WES in research: discovery of new disease genes and/or new clinical phenotype 4.WES in clinical settings: currently report confirmed mutations in genes known to cause diseases (based on OMIM, HGMD db, and PubMed). 5. Novel gene/variants require functional confirmation.

Acknowledgement

Grant support: MDA

Assistant Directors

Jing Wang: variants interpretation Victor Wei Zhang: design and analysis Megan Louise Landsverk: interpretation Fangyuan Li: multiple deletion mapping

Genetic counselors

Eric Schmitt Sandra Peacock Andrea Ybarra Laboratory Staff David Chen: bioinformatics Meagan Palculict Megan E. Cornwell Zui Hung Ng Avian N. Nedd Zuzie Tien J Michael Luchak Michelle C Halberg Rakhade Mrudula Chang Jocelyn Linh Phuong Trieu Ramirez, Elisa M Nguyen Christy Gonzalez Dimas

Postdoctoral Fellows

Sha Tang Hui Yu Xia Tian Hao Wang Zhi-Yu Niu

Medical Director

William Craigen