

Next Generation Sequencing Analyses of Complex Dual Genome Mitochondrial Disorders: Technical Approach

ABRF Satellite Workshop Palm Springs, CA March 2, 2013

Lee-Jun C. Wong, Ph.D.
Molecular and Human Genetics
Baylor College of Medicine
ljwong@bcm.edu

content:

- 1.Application of NGS to molecular diagnosis of mitochondrial disorders: nuclear genes and mitochondrial genome
- 2. Validation and Quality control of Clinical tests
- 3. Types of mutations detected: point mutations, small indel, large deletions?
- 4. Target nuclear gene capture/sequencing 5. Mitochondrial genome: long range PCR of the whole mitochondrial genome

Mitochondrial Function: produce energy

Involves 2 genomes: mitochondrial and nuclear

Mitochondrial Disorders: Disease of Energy Deficiency Respiratory chain defect Defects in oxidative phosphorylation

Preferentially affect tissues of high energy demand Major clinical manifestation:

neuromuscular phenotype

CNS, Brain, skeletal muscle, heart, liver, etc.

Homoplasmy and Heteroplasmy

- Homoplasmy
 - 0 or 100%
- Heteroplasmy

Complex dual genome mitochondrial disorders:

- mtDNA biosynthesis+integrity maintenance
- Salvage synthesis of dNTP
- Complex assembly/Complex subunits
- Transcription/translation factors
- MRPLs/MRPSs (mito ribosomal proteins)
- Transcription and translation factors
- Mitochondrial aa-tRNA synthetases
- •TIMMs and TOMMs, protein transporters
- dynamic fusion/fission proteins
- Apoptotic factors, protein kinases

Majority of mitochondrial disorders are caused by Defects in nuclear genes

1500 nucear genes targeted to mitochondria Currently about 200+ linked to known diseases

Current Approaches: step-wise

- 1. Screen for mtDNA common point mutations: by PCR/ASO or other detection methods
- 2. mtDNA deletion: by Southern analysis
- 3. Quantification of heteroplasmic mtDNA point mutations: ARMS qPCR
- 4. Determination of mtDNA deletion and breakpoints: aCGH, PCR sequencing
- 5. Unknown mutations: sequence the whole mitochondrial genome by Sanger
- 6. mtDNA depletion: qPCR analysis for mtDNA copy number
- 7. Sequence relevant nuclear genes, one by one
- 8. aCGH to detect large deletions in nuclear genes

Gold Standard Sanger Sequencing

Pitfalls

- 1. Does not provide quantitative information
- 2. Sequence gene one by one
- 3. Does not detect deletions
- 4. Tedious and costly
- 5. Not comprehensive

Mitochondrial Challenges

- 1.The most clinically and genetically heterogeneous dual genome disorders
- 2.Primary defects in mitochondrial genome, common point mutations and large deletion
- 3. Quantification of mutation heteroplasmy
- 4.Majority (90%) of mitochondrial disorders are caused by one of ~1500 nuclear genes
- 5.Advances in technologies for diagnosis of complex disorders: array CGH and next generation sequencing approach

Next Generation Massively Parallel Sequencing

- 1. Ability to sequence many genes in parallel
- 2. Identify new mutations in known genes
- 3. Discover new disease genes
- 4. Detect point mutations, small indels and large deletion/duplication (CNV)
- 5. Quantify mtDNA heteroplasmy, mosaicism
- 6. RNA sequencing, Gene expression
- 7. Quantitative DNA methylation analysis

NGS workflow

Quality control procedures are required to assure that each step works properly and results are accurate for each patient's specimen analyzed

Bring NGS to Clinical Diagnosis

Sanger

NGS

Whole Exome

Whole Genome

~20-30X

- 1. Single gene
- 2. Large gene
- 3. Few genes
- 4. Hundreds of genes

~50-100X

~20,000 genes

- 1. Target mutation
- 2. Target gene (s)

>~600-1000X <200 genes

Increasing Complexity

Decreasing coverage

Illumina Sequencing Technology Overview

Primary analysis

(Adapted from Illumina.inc.)

sequence analysis: three steps With built-in QA/QC samples

Primary

Image
Capture/
Processing

Convert image to base calls
Base quality scores assigned

Secondary

Sequence Reads

Filtering of reads
Based on quality
Alignment / Assembly

Tertiary

Variant
Calling/
Annotation

Results interpretation

To bring NGS to clinical settings requires

1. Validation:

- Cover all bases in all CDS + 20 bp in flanking introns all mutations/VUS confirmed by a second method
- Phase I: specificity, sensitivity, reproducibility, accuracy, compared to Sanger
- Phase II: detection of different mutation types using positive control samples
- Phase III: Blinded Samples without molecular diagnosis to obtain diagnostic yield
- 2. Define experimental error, limit of detection, alignment and analytical steps
- 3. Variants interpretation and reporting

Nuclear Genes Capture Sequencing

- 1. Genes responsible for mtDNA Depletion and maintenance of integrity
- 2. GSD (liver and muscle forms)
- 3. Complex I-V panel, CoQ panel
- 4. Usher panel
- 5. PDH panels
- 6. Metabolic myopathy
- 7. RP (retinitis pigmentosa) panel 66 genes
- 8. Mitome 200
- 9. Mitome 500
- 10.Mitome1500
- 11.Exome
- 12.Whole Genome

Fully covered, fully validated by Sanger

Example of Nuclear Gene Capture Sequencing

1. Panel testing:

NGS analysis of a group of genes involved in Glycogen Metabolism: synthesis and breakdown Glycogen Storage Disorders (GSD)

Genes involved in Glycogen Metabolism

GSD Types	Genes	Liver Panel	Muscle panel	NM#
GSD 0A	GYS2	\checkmark		NM_021957.3
GSD 0B	GYS1		$\sqrt{}$	NM_002103.4
GSD IA	G6PC	$\sqrt{}$		NM_000151.2
GSD IB	SLC37A4	$\sqrt{}$		NM_001467.5
GSD II	GAA	$\sqrt{}$	$\sqrt{}$	NM_000152.3
GSD III	AGL	$\sqrt{}$	$\sqrt{}$	NM_000642.2
GSD IV	GBE1	$\sqrt{}$		NM_000158.3
GSD V	PYGM		$\sqrt{}$	NM_005609.2
GSD VI	PYGL	$\sqrt{}$		NM_002863.4
GSD VII	PFKM		$\sqrt{}$	NM_000289.5
GSD IX A	PHKA2	$\sqrt{}$		NM_000292.2
GSD IX B	PHKB	$\sqrt{}$, mild	NM_000293.2
GSD IX C	PHKG2	$\sqrt{}$		NM_000294.2
GSD IX D	PHKA1		$\sqrt{}$	NM_002637.3
GSD X	PGAM2			NM_000290.3
GSDXIV	PGM1		$\sqrt{}$	NM_002633.2

NGS Panel name	GSD-16gene-panel	
Genes included	AGL, G6PC, GAA, GBE1, GYS1, GYS2, PFKM, PGAM2, PGM1, PHKA1, PHKA2, PHKB, PHKG2, PYGL, PYGM, SLC37A4 (16 genes)	
Number of CDS	294	S. S
Target size	50,062 bp (CDS ± 20 bp)	7
Enrichment	In solution capture library	
Sequencing info	Illumina HiSeq 2000, 75 cycle, single-end	

Minimal coverage per base of Exons

Phase I Validation: known samples

Sample ID	Mean coverage	Total reads Per 100 bp	Min coverage	# of CDS < 20X	Multiplexing factor	1
547	722±233	988±317	68	0	8	
755	837±195	1146±266	77	0	8	
700	783±187	1072±255	93	0	8	
833	803±189	1099±258	74	0	8	
264	686±225	939±306	47	0	8	-1
041	841±220	1151±300	51	0	8	
203	747±238	1021±324	92	0	8	
941	674±220	921±299	1/92	3	8	
545	731±230	1004±313	77	0	8	
206	727±243	998±330	1/77	1	8	
067	706±228	971±311	93	0	8	
504	623±177	856±244	59	0	8	
531	850±345	1169±418	69	0	8	
255	878±267	1028±355	93	0	8	

GSD1A negative

Patients	Age	Gender	Clinical Indication
24547 P8	4m	M	hypoglycemia, hepatomegaly
28755 P9	13yr	F	fat,encephalopathy, abnormal liver function
30700 P10	1.5yr	F	hyperlipidemia, hyperlactatemia,ftt, hepatomegaly
31833 P11	10m	F	hypoglycemia, hepatomegaly
34264 P12	3yr	M	hypoglycemia, hyperuricemia, reccurent infections, bone fractures
36041 P13	3m	F	pulmonary hypertension, large liver, elevated lipids/uric acid/lactate
37203 P14	2yr	M	Hepatomegaly

NGS results summary

Patient	Gene	CDS	exons	mutations
	SLC37A4	5	6	c.817G>A (p.G273S)
30700 P10		7	8	c.1042_1043delCT
		7		(p.L348Vfs*53)
31833 P11	SLC37A4	5	6	c.785-3_786del5
		5	6	c.785-3_786del5
37203 P14	AGL	2	4	c.256C>T (p.Q86X)
		20	22	c.2723T>G (p.L908R)

c.817G>A (p.G273S): conserved from C. elegans to human, predicted to be deleterious.

c.2723T>G (p.L908R): conserved from yeast to human, predicted to be deleterious.

P10 SLC37A4 c.1042_1043delCT het

P11: SLC37A4

c.785-3_786del5 homozygous

GSD by panel NGS diagnostic yield: >65%

Usher syndrome

Hearing loss and retinitis pigmentosa USH1, USH2, USH3
9 huge genes
Clinical overlap

By NGS: diagnostic yield is >83% 10/12 found 2 deleterious mutant alleles 2/12: one heterozygous allele

Usher syndrome

NGS Panel name	Ushe	Usher panel-2195							
Genes included		9 nuclear genes: CDH23, CLRN1, DFNB31, GPR98, MYO7A, PCDH15, USH1C, USH1G, USH2A							U
Number of CDS	362CI	362CDS						0	
Target size	81,17	70 bp (CD	S ± 20 bp	o)					
Enrichment	In sol	ution cap	ture libra	ary					
Sequencing info	Illumi	Illumina HiSeq 2000, 75 cycle, single-end						V	
Sample ID#	1	2	3	4	5	6	7	8	
Mean covera ge / base	749± 235	1564± 499	902± 297	1636± 539	1623 ± 505	1433± 515	1345± 425	1627± 536	
Number of CDS < 20X	4	3	4	4	3	4	3	3	7

NGS detects large deletions (CNV) Usher panel (previously not identified) USH2A: CDS38-46 homozygous del

USH2A: CDS3-34 heterozygous deletion.

Abnormal Bone Mass related disease

High Bone Mass Panel (14 genes)

ANKH, CA2, CLCN7, CTSK, FAM123B, FAM20C, LEMD3, OSTM1, SOST, TCIRG1, TGFB1, TNFRSF11A, TNFSF11, TYROBP

Low Bone Mass Panel (21 genes)

ALPL, B4GALT7, COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, CRTAP, FBN1, FKBP10, LEPRE1, PLOD2, PLOD3, PPIB, SERPINF1, SLC34A1, SLC39A13, SLC9A3R1, SP7, TNFRSF11A, TNFRSF11B

Abnormal Bone Mass related disease

NGS Panel name	Skeletal panel		
Genes included	34nuclear genes i +lowbonemass-pa	ncluding highbonemass-panel anel	6
Number of CDS	602 CDS		
Target size	98962bp (CDS ± 2	0 bp)	
Enrichment	In solution captur	e library	
Sequencing info	Illumina HiSeq 20 single-end	00, 75 cycle,	
	Mean	# of Exons with one	

	Mean coverage per base	# of Exons with one base covered <20X (Exon)		
Panel	663x	20	3.3%	
Reduced coverage	165x	134	22.1%	

BCM

- 1:TK2, E1: GC-rich. Capture not consistent between samples
- 2: LPIN1: E18 homozygous deletion
- 3: ACADL:E1: many probes but consistently among samples never been captured and sequenced to sufficient depth
- 4: TYMP, CDS7-9 (E8-E10): low coverage

NGS Panel testing)

Tests	number of genes	# cds	target size (bp)	cds needs PCR/Seq
GSD	16	294	50,062	0
Usher Synd	9	363	81,171	4
Bone-High				-011
Mass	14	129	27,318	13
Bone-Low				
Mass	20	432	67,419	6
Myopathy/ rhabdomyolysis	26	401	70,178	4
RP	66	939	202,800	16
mtDNA				
Depletion	14	145	26,537	4
Mitome200	162	1,788	307,144	31

Genetically and Clinically Heterogeneous

Mitochondrial Genome: 16.6 kb

Point mutations: common, novel

% mutant loads: heteroplasmy

large mtDNA deletions

copy number changes: mtDNA depletion

Nuclear Genes: ~ 1,300 genes

Most commonly autosomal recessive Severe, present at early age of life Point mutations and large deletions Autosomal dominant, X-linked

Mitochondrial Disease:

a Complex Dual Genome Disorders

Genetically and Clinically Heterogeneous

Nuclear Genes: ~ 1,500 genes

specific panels:

depletion

complex subunits and assembly genes

aa tRNA synthetases

Mitome200

Mitome 500

Mitome1500

Exome

Whole genome

Example

- 11 month old girl
- Presented with hepatomegaly and hypoglycemia
- Previous tests revealed:
 - mtDNA depletion in liver: 9% of control
 - Whole mitochondrial genome sequencing is unremarkable

NGS detects homozygous deletions: MPV17 (Exons 3-7)

Deletions in MPV17 are confirmed by arrayCGH

Mitome200

NGS Panel name	Mitome200				
Genes included	162 nuclear genes related to mito diseases				
Number of CDS	1,789				
Target size	308,281 bp (CDS ± 20 bp)				
Enrichment	In solution capture library				
Sequencing info	Illumina HiSeq 2000, 75 cycle, single-end				

	Mean coverage per base	one base	ons with e covered 20X kon)	# of bases covered <20X (Base)		
Panel	1569x	14	0.78%	1,107	0.36%	
Low coverage	92x	499	27.89%	61,626	19.99%	

Mitome200 vs low coverage exomes

Next Generation deep seq 1 pair of primers to avoid NUMT

Sensitivity and specificity

College of Me		N	GS	Sanger NGS			
ID#	TP	FN	TN	FP	Positives	Sensitivity (%)	Specificity (%)
309	15 (1het)	0	16,554	0	14	100	100
286	15	0	16,554	0	15	100	100
964	41	0	16,528	0	41	100	100
614	45	0	16,524	0	45	100	100
798	37	0	16,531	0	37	100	100
914	16 (1het)	0	16,553	0	16	100	100
085	38	0	16,531	0	38	100	100
799	32	0	16,537	0	32	100	100
926	37	0	16,532	0	37	100	100
563	46	0	16,523	0	46	100	100
889	23 (1het)	0	16,546	0	22	100	100
820	40	0	16,529	0	40	100	100
Sum	385	0	198,442	1	383	100%	100%

>500 samples analyzed by MPS so far

Detection of mtDNA deletions by whole mtDNA amplification followed by NGS

Deletions are confirmed by MitoMet array CGH and PCR/sequencing

Quantification of heteroplasmy

		Base Heteropl		asmy (%)
ID#	Position	change	NGS	qPCR
263	normal		NA	ND
062	m.3243	A>G	1.1	3
367	m.3243	A>G	2.3	8
030	m.3243	A>G	6.8	16
085	m.3243	A>G	11	32
362	m.3243	A>G	27	50
761	m.3243	A>G	36	48
074	m.3243	A>G	68	95
626	m.8344	A>G	84	73
611	m.8344	A>G	86	82
926	m.8993	T>C	88	87
799	m.10191	T>C	28	ND
994	m.11778	G>A	90	83
027	m.11778	G>A	91	91
285	m.13513	G>A	37	84
487	m.13513	G>A	54	95
563	m.14484	T>C	45	20

Spike-in 1.1% positive control

Mito genome and Mitome NGS QA/QC workflow

"External quality control for each indexed sample"

Spike in: 7 fragments with different codons at 6 different sites on phage DNA sequence

Spike in Quantitative control standards: for every sample

						0.10%	0.50%	2.00%	5.00%	20.00%	50.00%
X	I	${f T}$	W	G	S	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%
M/X	I	${f T}$	W	G	S	0.40%	0.40%	0.40%	0.40%	0.40%	0.40%
M/X	I/I	${f T}$	W	G	S	1.50%	1.50%	1.50%	1.50%	1.50 %	1.50 %
M/X	I/I	T/T	W	G	S	3%	3 %	3%	3%	3%	3%
M/X	I/I	T/T	W/W	G	S	15%	15 %	15 %	15 %	15%	15%
M/X	I/I	T/T	W/W	G/G	S	30 %	30 %	30 %	30%	30%	30%
M/X	I/I	T/T	W/W	G/G	s/s	50 %	50 %	50%	50 %	50%	50%
						99.90%	99.50%	98.00%	95.00%	80.00%	50.00%
						M/X	I/I	T/T	W/W	G/G	s/s

Limit of detection~ 1.5%

Conclusion

- 1.Bringing NGS to clinical dx lab is practical.

 Proper QA/QC procedures should be instituted according to CLIA/CAP guidelines
- 2. Target gene capture/NGS: all procedures should be validated and positives confirmed
- 3.WES in research: discovery of new disease genes and/or new clinical phenotype
- 4.WES in clinical settings: currently report confirmed mutations in genes known to cause diseases (based on OMIM, HGMD db, and PubMed).
- 5. Novel gene/variants require functional confirmation.

Acknowledgement

Grant support: MDA

Assistant Directors

Jing Wang: variants interpretation Victor Wei Zhang: design and analysis Megan Louise Landsverk: interpretation Fangyuan Li: multiple deletion mapping

Genetic counselors

Eric Schmitt Sandra Peacock Andrea Ybarra

Laboratory Staff

David Chen: bioinformatics

Meagan Palculict
Megan E. Cornwell
Zui Hung Ng
Avian N. Nedd
Zuzie Tien
J Michael Luchak
Michelle C Halberg
Rakhade Mrudula
Chang Jocelyn
Linh Phuong Trieu
Ramirez, Elisa M
Nguyen Christy

Gonzalez Dimas

Postdoctoral Fellows

Sha Tang Hui Yu Xia Tian Hao Wang Zhi-Yu Niu

Medical Director

William Craigen