Sequencing Applications in HIV Forensics

Steve Scherer Human Genome Sequencing Center Department of Molecular and Human Genetics Baylor College of Medicine

ABRF 2013

Application of Next Generation Sequencing Technologies for Whole Transcriptome and Genome Analysis Workshop

Phylogenetic Linkage Cases

Establishing Linkage:

- The Florida Dentist 6 patient samples were more closely related to each other than unrelated controls
- The French Surgeon
- The French Nurse
- Criminal cases of HIV transmission in Sweden, Australia, Belgium, Denmark, Germany and Scotland

Established Non-Linkage:

- Baltimore Surgeon
- UK obstetrician/gynecologist

Molecular Forensics

- National: 2001 Anthrax in the Mail Case Amerithrax
 - Lengthy FBI/DOJ investigation Bruce Ivins
 - Highly controversial
 - National Academy of Sciences Review: "impossible to reach any definitive conclusion about the origins of the anthrax in the letters, based solely on the available scientific evidence"
- International: The Poison Umbrella Case
 - Georgi Markov: Bulgarian activist, playwright & satirist was working for the BBC World Service in London

SEARCH
The Web
CNN.com

Search

advertisement

Home Page World U.S. Weather Business at COMMONEY Sports at SLCOM Politics Law Technology Science & Space Heaith Entertainment Travel Education Special Reports

E-mail Newsletters

SERVICES

Video

Ricin and the umbrella murder

Thursday, October 23, 2003 Posted: 2:27 AM EDT (0627 GMT)

LONDON, England -- It was one of the most notorious acts of assassination carried out during the Cold War.

Bulgarian dissident Georgi Markov was killed by poison dart filled with ricin and fired from an umbrella in London in 1978.

Markov, a communist defector working for the BBC World Service, left his office at Bush House in the UK capital on September 11 and walked across Waterloo Bridge to take the train home to Clapham in south-west London.

DNA Testing in the Judicial System

- In use since the mid '80's
- Usually used to link perpetrators to violent crime scenes
- Generally stable allowing the use of polymorphic marker DNA fingerprinting error correcting machinery

Dynamic evolution of HIV

Individuals infected with HIV-1 contain a dynamically evolving population of related genomes

- Viral expansion
 - Mutation rate
 - Recombination rate
 - Production of 10⁸ to 10¹⁰ virions per day
- Lineage extinction
 - Non-replicating virions
 - Immune system
 - Drug therapy

Nature Reviews | Genetics

Phylogenetics in Forensics

Viral dynamics limit use the common practice of matching DNA profiles

Phylogenetic methods are ideally suited for determining the HIV pattern of descent in suspected transmission cases

In support of the *a priori* hypothesis, HIV forensics can identify case samples to be "more closely related" than to unrelated samples

In opposition of the *a priori* hypothesis, HIV forensics can show case samples to be unrelated

HIV forensics

State of Louisiana v. Richard J. Schmidt

Patient \rightarrow Trahan

State of Washington v. Anthony E. Whitfield

Whitfield \rightarrow 5 partners

Metzker *et al.* (2002) *PNAS* **99**: 14292-14297

State of Texas v. Philippe Padieu

Padieu \rightarrow 6 partners

Scaduto *et al*. (2010) *PNAS* **107**: 21242-21247

HIV genes: pol and env

Methods involved were:

- Fractionation of PBMCs
- Isolation of genomic DNA
- PCR and cloning
- Sanger sequencing
- Multiple sequence alignments

State of Louisiana v. Richard J. Schmidt

Patient \rightarrow Victim

Prosecution argued successfully:

Methods used for:

- DNA isolation
- PCR
- DNA sequencing
- Phylogenetic analysis of HIV-1 positive samples Met the standards of judicial evidence admissibility

Due to:

- Are subject to empirical testing
- Can be assessed for error
- Subject to peer review and publication
- Generally accepted in the scientific community

Case Facts

- August 4, 1994 a Lafayette, LA gastroenterologist created a a cocktail of two blood samples; one from a man infected with HIV-1 and a second from a patient infected with Hep-C, then infected his former girlfriend by intramuscular injection
- Victim had 7 sexual relationships between 1984 and 1995; all tested negative for HIV
- Victim was a nurse in the Lafayette area; no documented needle sticks; one HIV + saliva splash; tested negative
- Victim donated blood and tested negative 10/92, 5/93 & 4/94
- Victim tested positive in January 1995 accused the physician
- Police raid discovered potential source blood draw record

Testing Protocol

- 1. Data was derived from two separate labs and two independent blood draws; the second lab was blinded.
- 2. Samples were tested one at a time lab scrub between samples.
- 3. PCR amplified *env* and RT genes
 - exhibit different biological functions
 - subject to different selective pressures
 - known to undergo different rates of evolution.
- 4. 50 molecular clones from sample were sequenced to further delineate *env* genetic diversity.
- Geographic HIV-1+ controls were recruited from the Lafayette metro area based on previous studies demonstrating geographic subtype stratification of HIV-1 sequences

Risk factors			
Homosexual	57%	(16/28)	
Heterosexual	18%	(5/28)	
Blood transfusion	11%	(3/28)	
Bi-sexual	7%	(2/28)	
IV drug user	4%	(1/28)	
Sharps	4%	(1/28)	
Date infected			
1983–1989	57%	(16/28)	
1990–1992	36%	(10/28)	
Unknown	7%	(2/28)	
CD4 ⁺ cell counts			AIDS
>500	36%	(10/28)	(2/10)
200-500	25%	(7/28)	(3/7)
<200	25%	(7/28)	(6/7)
ND	14%	(4/28)	(4/4)

Table 1. Summary of LA control group sample sources

Risk factors and dates infected were obtained by anonymous questionnaire. ND, not determined.

Phylogenetic Analyses

For the case: parsimony and minimum evolution using maximum-likelihood distances

Subsequently: Markov-chain Monte Carlo Bayesian Analysis based on a General-Time-Reversible model of sequence evolution, with γ-distributed rate heterogeneity among sites and a calculated proportion of invariable sites

Table 2. Means and 95% confidence intervals for parameters of the GTR + Γ + I model for gp120 sequences

Parameter	Mean	95% Confidence interval			
C–T substitution rate	5.03	3.60-7.03			
C–G substitution rate	0.97	0.57-1.54			
A–T substitution rate	0.75	0.52-1.07			
A–G substitution rate	3.87	2.91-5.10			
A–C substitution rate	2.34	1.60-3.34			
Frequency of A	0.40	0.37-0.43			
Frequency of C	0.15	0.13-0.17			
Frequency of G	0.23	0.21-0.25			
Frequency of T	0.22	0.20-0.25			
α (shape of Γ distribution)	0.53	0.43-0.68			
Proportion of invariable sites	0.08	0.01–0.18			

Data based on MCMC sampling (25). The rate of all substitution classes is shown relative to that of the G–T substitution class.

Table 3. Means and 95% confidence intervals for parameters of the GTR + Γ + I model for the RT sequences

Parameter	Mean	95% Confidence interval			
C–T substitution rate	110.36	23.04–195.53			
C–G substitution rate	17.59	2.82-42.02			
A–T substitution rate	7.62	1.34–17.32			
A-G substitution rate	83.01	16.29-171.17			
A–C substitution rate	16.60	3.41-35.62			
Frequency of A	0.40	0.36-0.43			
Frequency of C	0.17	0.14-0.19			
Frequency of G	0.20	0.17-0.23			
Frequency of T	0.23	0.20-0.26			
α (shape of Γ distribution)	0.94	0.38–1.94			
Proportion of invariable sites	0.50	0.29-0.63			

Data are based on MCMC sampling (25). The rate of all substitution classes is shown relative to the rate of the G–T substitution class.

Phylogenetic analysis of the gp120 region using a minimum evolution criterion and maximum likelihood distances assuming an HKY+Γ model of evolution.

Metzker M L et al. PNAS 2002;99:14292-14297

Phylogenetic analysis of the RT region; details of the analysis are the same as for Fig. 1.

Metzker M L et al. PNAS 2002;99:14292-14297

Reverse transcriptase (RT) alignment of predicted amino acid residues

Results

For RT: Patient sequences were found to be paraphyletic with respect to victim sequences (victim sequences nested within patient sequences) by parsimony, minimum evolution, and Bayesian analyses.

For *env* gp120: Not as strong; supports a weak monophyletic grouping. Probably due faster evolution and strong immuno-selection.

Defendant was found guilty of attempted second degree murder; Appeal rejected by the Louisiana Supreme Court; U.S. Supreme Court declined to the case

The Second Set of Cases

State of Washington v. Anthony E. Whitfield

Whitfield \rightarrow 5 partners

State of Texas v. Philippe Padieu Padieu \rightarrow 6 partners

Direction of transmission (source → recipient)

Providing evidence for the direction of transmission would further strengthen the *a priori* hypothesis.

Genetic bottleneck during transmission

- Paraphyly: Evidence for direction of transmission
 Study design:
- identities of case subjects were blinded to investigators
- case sample handling were separated both temporally and spatially to eliminate the possibility of cross contamination
- case allegations were multiple transmissions from a single source

Washington Case

- Defendant allegedly learned of his HIV positive status in April 1992; 17 partners were exposed between 1999 and 2004; 5 tested positive between 2002 and 2004
- These 6 samples formed the basis of the *a priori* hypothesis of transmission from one source to multiple recipients

Texas Case

- Defendant allegedly learned of his HIV positive status in September 2005; 6 partners tested positive between April 2006 and March 2007
- These 7 samples formed the basis of the *a priori* hypothesis of transmission from one source to multiple recipients

Washington case: ML tree for the pol gene dataset using BLAST-selected GenBank controls.

Scaduto D I et al. PNAS 2010;107:21242-21247

Washington case: ML tree for the env gene dataset using BLAST-selected GenBank controls.

©2010 by National Academy of Sciences

Texas case: pol tree

CC01 exhibited a paraphyletic relationship to all CC case sequences

- Bayesian posterior probabilities (1.00)
- ML bootstrapping proportions (0.98)

Red circle represents the most recent common ancestor of sequences from CC01

Texas case: env tree

CC01 exhibited a paraphyletic relationship to all CC case sequences but CC05

- Bayesian posterior probabilities (1.00)
- ML bootstrapping proportions (1.00)

Red circle represents the most recent common ancestor of sequences from CC01

Breaking the code

For the WA case, we inferred that sample WA04 was the source (i.e., index case)

At trial, the identity of sample WA04 was revealed to be that of Anthony E. Whitfield

For the TX case, we inferred that sample CC01 was the index case

At trial, the identity of sample CC01 was revealed to be that of Philippe Padieu

Texas case: env tree

CC07 exhibited a paraphyletic relationship to several CC01 and all CC03 sequences

- Bayesian posterior probabilities (1.00)
- ML bootstrapping proportions (0.79)

Testing for Recombination in env

Used a maximum likelihood method that detects recombination breakpoints using a hidden Markov model* If two trees are allowed across the sequence, it estimated a recombination structure like this:

NIJ grant: 2011-DN-BX-K534

*Boussau et al. 2009. Evolutionary Bioinformatics. 5: 67-79.

Divergent Signals Between Halves

1st half - Posterior Probability: 0.00

2nd – half - Posterior Probability: 1.00

Divergent Signals Between Halves CC01 Maps within V4 CC03 loop of gp120 Site index **CC07** Second half ø Support grouping Area of Interest 4 Difference (Pos minus Neg Constraint) 2 0 Υ 4 First half Oppose grouping φ 0 200 400 600 800

NIJ grant: 2011-DN-BX-K534

	Browse	For Authors	Abou	ıt Us	Search	٩
					a	dvanced search
GOPEN ACCESS		1	0,255	4	13	2
POLICY FORUM			VIEWS	CITATIONS	ACADEMIC BOOKMARKS	SOCIAL SHARES

Biocrimes, Microbial Forensics, and the Physician

Steven E Schutzer , Bruce Budowle, Ronald M Atlas

Schutzer SE, Budowle B, Atlas RM (2005) Biocrimes, Microbial Forensics, and the Physician. PLoS Med 2(12): e337. doi:10.1371/journal.pmed.0020337 http://www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.0020337

NGS in HIV forensics

Development of the 'pathogen toolkit'

Long-range PCR

Clone analysis: EcoRI

Large insert cloning

NIJ grant: 2011-DN-BX-K534

NGS in HIV forensics

Development of the 'pathogen toolkit'

sequence by NGS technologies

Further Cases and Uses

Virology Journal

BioMed Central

Open Access

Research

A HIV-I heterosexual transmission chain in Guangzhou, China: a molecular epidemiological study

Zhigang Han⁺¹, Tommy WC Leung⁺², Jinkou Zhao⁺³, Ming Wang¹, Lirui Fan¹, Kai Li⁴, Xinli Pang⁴, Zhenbo Liang⁴, Wilina WL Lim² and Huifang Xu^{*1}

Address: 'Guangzhou Center for Disease Control and Prevention, Guangdong, PR China, 'Virology Division, Public Health Laboratory Services Branch, Center for Health Protection, Hong Kong SAR, 'Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China and 'Hundu Center for Disease Control and Prevention, Guangdong, PR China

Email: Zhigang Han - zhiganghan616@163.com; Tommy WC Leung - tommywcleung@yahoo.com; Jinkou Zhao - jinkouzhao@hotmail.com; Ming Wang - wangming@gzcdc.org.cn; Lirui Fan - fanlirui2010@hotmail.com; Kai Li - gzibwf@21cn.com; Xinli Pang - gzibwf@21cn.com; Zhenbo Liang - gzibwf@21cn.com; Wilina WL Lim - wllim@pacific.net.hk; Huifang Xu* - xuhuifang1027@21cn.com * Corresponding author * tequal contributors

Published: 25 September 2009

Received: 25 June 2009 Accepted: 25 September 2009

This article is available from: http://www.virologyj.com/content/6/1/148

© 2009 Han et al; licensee BioMed Central Ltd.

Virology Journal 2009, 6:148 doi:10.1186/1743-422X-6-148

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Haemophilia

Haemophilia (2012), 18, 291-299

DOI: 10.1111/j.1365-2516.2011.02620.x

ORIGINAL ARTICLE Transfusion transmitted disease

Molecular evidence of HIV-1 transmission in 20 Korean individuals with haemophilia: phylogenetic analysis of the *vif* gene

Y.-K. CHO,* Y. JUNG,* J.-S. LEE* and B. T. FOLEY†

*Department of Microbiology, University of Ulsan College of Medicine, Seoul, South Korea; and †HIV Databases, Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, NM, USA

OPEN OACCESS Freely available online

Using HIV Transmission Networks to Investigate Community Effects in HIV Prevention Trials

Joel O. Wertheim¹*, Sergei L. Kosakovsky Pond², Susan J. Little², Victor De Gruttola³

1 Department of Pathology, University of California San Diego, San Diego, California, United States of America, 2 Department of Medicine, University of California San Diego, San Diego, San Diego, California, United States of America, 3 Department of Biostatistics, Harvard University, Cambridge, Massachusetts, United States of America

OPEN a ACCESS Freely available online

Molecular Epidemiology of HIV-1 Transmission in a Cohort of HIV-1 Concordant Heterosexual Couples from Dakar, Senegal

Wim Jennes¹*, Jordan K. Kyongo¹, Evelyn Vanhommerig¹, Makhtar Camara², Sandra Coppens³, Moussa Seydi⁴, Souleymane Mboup², Leo Heyndrickx³, Luc Kestens¹

1 Laboratory of Immunology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium, 2 Laboratory of Immunology, Department of Bacteriology-Virology, Centre Hospitalier Universitaire Le Dantec, Cheikh Anta Diop University, Dakar, Senegal, 3 Laboratory of Virology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium, 4 Department of Infectious Diseases, Centre Hospitalier Universitaire Fann, Cheikh Anta Diop University, Dakar, Senegal

OPEN O ACCESS Freely available online

PLOS ONE

MRSA Transmission on a Neonatal Intensive Care Unit: Epidemiological and Genome-Based Phylogenetic Analyses

Ulrich Nübel¹*⁹, Matthias Nachtnebel^{2,3,4}⁹, Gerhard Falkenhorst², Justus Benzler², Jochen Hecht^{5,6}, Michael Kube^{5¤}, Felix Bröcker⁵, Karin Moelling^{5,7}, Christoph Bührer⁸, Petra Gastmeier⁹, Brar Piening⁹, Michael Behnke⁹, Manuel Dehnert², Franziska Layer¹, Wolfgang Witte¹, Tim Eckmanns²

1 Department of Infectious Diseases, Unit of Nosocomial Infections, Robert Koch Institute, Wernigerode, Germany, 2 Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany, 3 Post Graduate Training in Applied Epidemiology, Robert Koch Institute, Berlin, Germany, 4 European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden, 5 Max Planck Institute for Molecular Genetics, Berlin, Germany, 6 Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medical Center, Berlin, Germany, 7 Institute of Medical Virology, University of Zürich, Zürich, Switzerland, 8 Department of Neonatology, Charité University Medical Center, Berlin, Germany, 9 Institute of Hygiene and Environmental Medicine, Charité University Medical Center, Berlin, Germany

Acknowledgements

BCM-HGSC Diane I. Scaduto – UTMDA Xiao-Mei Liu Wade C. Haaland * Donna Muzny Eric Boerwinkle Richard A. Gibbs U of Texas Jeremy M. Brown Derrick J. Zwickl David Hillis U of Michigan David P. Mindell Roger G. Ptak

