Metagenome Analysis With MG-RAST

Folker Meyer, PhD

Argonne National Laboratory and University of Chicago

Palm Springs, March 2013

http://metagenomics.anl.gov

Acknowledgements

<u>Team:</u>

- Dion Antonopoulos
- Daniela Bartels
- Jared Bischof
- Dan Braithewaite
- Sarah O'Brien
- Adina Chuang-Howe
- Narayan Desai
- Mark Domanus
- Mark d' Souza
- Katya Drybinski
- Elizabeth M. Glass
- Wolfgang Gerlach
- Kim M. Handley
- Travis Harrison
- Kevin Keegan
- Tobias Paczian
- Hunter Matthews
- Sarah Owens
- Wei Tang
- Will Trimble
- Andreas Wilke
- Jared Wilkening

Major Collaborators:

- A. Arkin (Berkeley)
- E. Chang (UChicago)
- Dawn Field (Oxford)
- F.-O. Glöckner (MPI Bremen)
- Jack Gilbert (Argonne)
- Jeff Grethe (CalIT2, CAMERA)
- Sarah Hunter / Guy Cochrane (EBI)
- Ken Kemner (Argonne)
- Rob Knight (Colorado)
- Nikos Kyrpides (DOE JGI)
- J. Tiedje (MSU)
- Owen White (UMaryland, HMP DACC)

Microbial community science

Discovery of novel functions

Environmental clone libraries ("functional metagenomics")

- Sanger sequencing of BAC clones with env. DNA
- \rightarrow low throughput but supports in vitro screens

→ Ecology

Amplicon studies (single gene studies, 16s rDNA)

- Sequencing of PCR amplified ribosomal genes
- \rightarrow sequence quality limited (\rightarrow rare biosphere debate) \rightarrow often can't distinguish between individual strains

→Ecology and Discovery

Shotgun metagenomics

 "random shotgun DNA sequencing applied directly to environmental samples"

Data \rightarrow qc \rightarrow genes \rightarrow proteins \rightarrow functional profiles \rightarrow your science \rightarrow organisms \rightarrow taxonomic profiles

Who are they?

What is MG-RAST

- Web based
 - Upload, process, share and publish microbial community data
 - Upload for reads and assemblies
 - Extensive QC
- Automated processing and analysis of
 - ITS / 16s / 18s
 - shotgun metagenome
 - meta transcriptome
- Comparison
 - Functional
 - Taxonomic
 - Using precomputed profiles
- Subset retrieval
 - All reads for *E.coli*
 - All reads for Lysine Biosynthesis
 - All reads hitting dnaA

Meyer et al., BMC Bioinformatics, 2008

metagenomics analysis server

# of metagenomes	72,795
# base pairs	22.4 Tbp
# of sequences	206.07 billion
# of public metagenor	mes 12,243

What problems do we solve?

- <u>Analysis</u> of single shotgun metagenomics
- With "large data"

Don't tell any physicist I said that

- **Comparison** of MANY data sets
 - Note: analyzed data is 10x the size of input data
- We need to be very efficient with resources
 - We do not use big iron!
 - Had to improve pipeline 750x over past 18months
- Triggered infrastructure research projects (SHOCK and AWE)

Metagenome Upload (ftp, http, gridFTP)

1 Data Submission

3. select sequence file(s)

4. choose pipeline options

SELECTED PIPELINE OPTIONS

assembled	Select this option if your input sequence file(s) contain assembled data and include the coverage information within each sequence header as described here.							
dereplication	Remove artificial replicate sequences produced by sequencing artifacts Gomez-Alvarez, et al, The ISME Journal (2009).							
screening	H. sapiens, NCBI v36							
	Remove any host specific species sequences (e.g. plant, human or mouse) using DNA level matching with bowtie Lan Genome Biol. 2009, Vol 10, issue 3							
dynamic trimming	Remove low quality sequences using a modified DynamicTrim Cox et al., (BMC Bioinformatics, 2011, Vol. 11, 485).							
(fastq only)	15	Specify the lowest phred score that will be counted as a high-quality base.						
	5	Sequences will be trimmed to contain at most this many bases below the above-specified						
	quality.							
length filtering	Filter based on sequence length when no quality score information is available.							
(fasta only)	2.0	Specify the multiplicator of standard deviation for length cutoff.						
ambiguous base	Filter based on sequence ambiguity base (non-ACGT) count when no quality score information is available.							
filtering (fasta only)	5	Specify the maximum allowed number of ambiguous basepairs.						

Metagenome Overview

Metagenome Overview

MG-RAST ID 4447970.3 🕹 Download 📊 Analyze 🔍 Search

Metagenome Name CA_05_4.6

PI	Alex Mira
Organization	CSISP
Visibility	Public
Static Link	http://metagenomics.anl.gov/linkin.cgi?metagenome=4447970.3

METAGENOME SUMMARY

Dataset CA_05_4.6 was uploaded on 05/05/2010 and contains 70,503 sequences totaling 27,669,924 basepairs with an average length of 392 bps. The piechart below breaks down the uploaded sequences into 5 distinct categories.

0 sequences (0.0%) failed to pass the QC pipeline. Of the sequences that passed QC, 1,569 sequences (2.2%) contain ribosomal RNA genes. Of the remainder, 48,591 sequences (68.9%) contain predicted proteins with known functions and 13,998 sequences (19.9%) contain predicted proteins with unknown function. 6,345 sequences (9.0%) have no rRNA genes or predicted proteins.

The analysis results shown on this page are computed by MG-RAST. Please note that authors may upload data that they have published their own analysis for, in such cases comparison within the MG-RAST framework can not be done.

DOWNLOAD data and annotations ANALYZE annotations in detail.

SEARCH through annotations.

Sequence Breakdown

NCBI Project ID -GOLD ID -PubMed ID 21716308 LOGIN

folker

REGISTER PASSWORD

.....

FORGOT'

login

TABLE OF CONTENTS

- Work with Metagenome Data
 - Download
 - Analyze
 Search
- Octaion
- Overview of Metagenome
 - Summary
 Project Information
 - GSC MIxS Info
 - Publication Abstracts
- Metagenome QC
 - DRISEE
 - Kmer Profile
 - Nucleotide Histogram
- Organism Breakdown
 - Taxonomic Distribution
 - Rank Abundance Plot
 - Rarefaction Curve
 - Alpha Diversity

Comparison tools

Metagenome Analysis

Workbench (0 Features) | Getting Started 📕 Functional PCoA 1 📕 Functional PCoA 2 📕

This data was calculated for metagenomes 4447970.3, 4447971.3, 4440284.3, 4440285.3 and 4440286.3. The data was compared to Subsystems using a maximum e-value of 1e-5, a minimum identity of 60 %, and a minimum alignment length of 15 measured in aa for protein and bp for RNA databases. The data has been normalized to values between 0 and 1. If you would like to view raw values, redraw using the form below.

redraw using normalized - values and bray-curtis - distance draw

The image is currently dynamic. To be able to right-click/save the image, please click the static button static

MG-RAST Notebooks / IPython integration

Data access / Downloads

Project Overview

THE ORAL METAGENOME IN HEALTH AND DISEASE (ID 128) Interagenomes I project metadata

Visibility Public

Static Link http://metagenomics.anl.gov/linkin.cgi?project=128

Share Project Add Jobs Edit Project Data Upload Info Upload MetaData Export MetaData

.....

MG-RAST	Metagenome	bp Count	Sequence	Blome AT	Feature AV	Material 🛓 🔻	Location AV	Country AT	Coordinates AV	Sequence	Sequence	Download
		< 🗸	< 💽	huma <u>•</u>	human -	numan • •				WGS-	454 🔹	
4447943.3	CA_04P	142,374,233	339,503	human- associated habitat	human- associated habitat	human- associated habitat	Valencia	Spain	39.481448, 0.353066	WGS	454	🖊 metadata 🖊 submitted 🖊 analysis
4447192.3	NOCA_01P	77,538,485	204,218	human- associated habitat	human- associated habitat	human- associated habitat	Valencia	Spain	39.481448, 0.353066	WGS	454	🖊 metadata 🖊 submitted 🖊 analysis
4447103.3	CA1_01P	203,711,161	464,594	human- associated habitat	human- associated habitat	human- associated habitat	Valencia	Spain	39.481448, 0.353066	WGS	454	🖊 metadata 🖊 submitted 🖊 analysis
4447102.3	NOCA_03P	100,125,112	244,881	human- associated habitat	human- associated habitat	human- associated habitat	Valencia	Spain	39.481448, 0.353066	WGS	454	👃 metadata 🖊 submitted 🦊 analysis
4447101.3	CA1_02P	129,851,692	295,072	human- associated habitat	human- associated habitat	human- associated habitat	Valencia	Spain	39.481448, 0.353066	WGS	454	🖊 metadata 🖊 submitted 🖊 analysis
4447971.3	CA_06_1.6	37,519,874	97,722	human- associated habitat	human- associated habitat	human- associated habitat	Valencia	Spain	39.481448, 0.353066	WGS	454	🖊 metadata 🖊 submitted 🖊 analysis
4447970.3	CA_05_4.6	27,669,924	70,503	human- associated habitat	human- associated habitat	human- associated habitat	Valencia	Spain	39.481448, 0.353066	WGS	454	🖊 metadata 🖊 submitted 🖊 analysis
4447903.3	CA_06P	123,266,763	306,740	human- associated habitat	human- associated habitat	human- associated habitat	Valencia	Spain	39.481448, 0.353066	WGS	454	🖊 metadata 🦊 submitted 🖊 analysis

Download // data access

- Data for all but one visual can be downloaded as spreadsheet
- arbitrary subset can downloaded
 In standard formats
- All data is available
 For public projects
- Data is typically private
 User decides to publish
- Pre-publication sharing via email-token

Reducing Terabytes to manageable objects

Terabases \rightarrow 100,000 protein functions with abundance	\rightarrow 4 profiles (COG, SEED, KEGG, NOG)
→ 900,000 organisms	\rightarrow 1 profiles (NCBI taxonomy)
	\rightarrow ability to go back to sequences

- Data volume growing fast:
 - 2003: C. Venter's GOS with **600MBp** (or 0.6GBp)
 - 2011: HMP with 6TBp (or 6,000GBp)
- Data is different: shorter reads, but many reads, noisy
- Major cost is in bioinformatics (10x the sequencing cost today)

The MG-RAST v3.x pipeline

Analysis cost are dominating

From: Wilkening et al., IEEE Cluster09, 2009

No one size fits all

- Every experiment is different
- Every sample is different
- MG-RAST does not provide one size fits all
 No single download for all purposes.
- We allow users to change parameters for analysis at view time
 - Using intelligent data products to construct annotated reads for specific parameters
- → Web interfaces ties it all together

Common views

Rarefaction

Taxonomic breakdown

Functional breakdown

Rank abundance

Taxon Abundance

More views

• Nucleotide histogram

9%

68.9%

Comparative tools

- Comparison of many data sets
 Normalization allows comparison
 - Many name spaces (GenBank, SEED, KEGG, GO, COG, eggNOG, UniProt supported)
 - Parameters can be varied at query time

Lessons learned...

- Old style:
 - "Lets sequence as much as we can afford"
 - "Metagenomics is like genomics"
- Today:
 - Often 16s amplicon study first
 - replicates (biological and technical)
 - "design for statistics"
 - "replicate or lie" (Jim Prosser)
 - metadata
 - Genomics Standards Consortium provides tools
 - Provide good QC
 - Identify signal vs. noise ratio
 - Throw away bad data when needed (!)
 - Identify appropriate analysis workflow
 - Perform assembly?

From: Knight, et al, Nature Biotechnology, 2012

➔ Design for statistics

➔ Metadata (r)evolution

➔ Data hygiene

→ Tool chain matters

DRISEE - objective QC for NGS data

- Approach is simple
 Develop synthetic reference
- DRISEE:
 - using ADRs to find noise
 - Correlates well with our ability to analyze data
- →Numerous quality issues →Not all NGS data is alike →Even from the same vendor

Keegan et al, PLoS Comp Bio, 2012

Discrepancies are error

Extreme cases of good and bad data quality

Tool chain variation

- Question:
 - What happens if I vary the tool chain?
- Existing approaches rely on:
 - Compare results of different studies (ie multiple pipelines)
- Here we study 5 different popular gene finding tools for metagenome on simulated data
- Effects are dramatic
 - Accuracy goes drops dramatically with moderate error
- Comparison of data requires identical tool chain

From: Trimble et al, BMC Bioinformatics, 2012

Analysis tool chain

- (small) changes in the analysis tool change will have dramatic impact on results
- Comparing the results of two independently analyzed studies is next to impossible
 - We need to "normalize" analysis
 - MG-RAST currently has 72,000 normalized metagenomes for comparison
 - Over ~11k are public

From: Meyer, et al, BMC Bioinformatics, 2008

Programmatic interface (API)

- Part of the KBase API
 - Contributes some unique features
- Uses standards whenever possible
 - Metadata (GSC MIxS)
 - Abundance profiles (BIOM)
- Enables extension by third parties
- Data download and subselection

<u>API Details</u>

- Added 1600 function calls
- Grouped into 14 higher level objects
- Currently access to 11,000 public metagenomes
- Subsetting by function and taxonomy
- Supports KEGG, SEED, UniProt, GenBank, IMG, COG, eggNOG, RDP, SILVA similarities

Download (ftp) and RESTful

Status: Public beta

Predicting replicons before assembly

- Using K-mer spectra to predict (pan-) genome size
 - K-mer= unique word, easily computed
- In addition to alpha diversity
 300 OTU data set
- Using k-mer size 25
- **Red** and **blue** replicons were missing in assembly
 - Allows adjustment of parameters

From: Trimble, et al, in prep

Thank you very much for you attention

Brief history of MG-RAST

- <u>December 2007 (v1)</u>
 - 100+ groups and ~250 data submitters
 - 100+ data sets, ~10+ GBp total size
- <u>October 2009 (v2)</u>
 - Pre-publication sharing available
 - ~1500 data submitters, ~300 public data sets
 - 6000+ data sets
 - 200+ GBp total data set size
 - About ~30 GBp/month throughput
- March 2011 (release v3)
 - 2500+ data submitters
 - 25,000 data sets total
 - 3000 submissions in 24h
- February 2012 (v 3.1.2)
 - 10 Terabasepairs (10^12 bp)
- March 2013 (v3.3)
 - 22 Terabasepairs
 - 72k data sets

Meyer et al., BMC Bioinformatics, 2008

simplified