MAYO CLINIC

Breaking the Data Analysis Bottleneck: Solutions That Work For RNA and Exome Sequencing

Rebecca Laborde, Ph.D.

Laboratory Medicine and Pathology Otolaryngology – Head and Neck Surgery

ABRF March 2, 2013

Acknowledgements

<u>Mayo Lab Team</u> David I. Smith, Ph.D Vivian Wang, Ph.D Terra Lasho, MS

<u>Mayo Analysis</u> Yan Asmann, Ph.D Sumit Middha

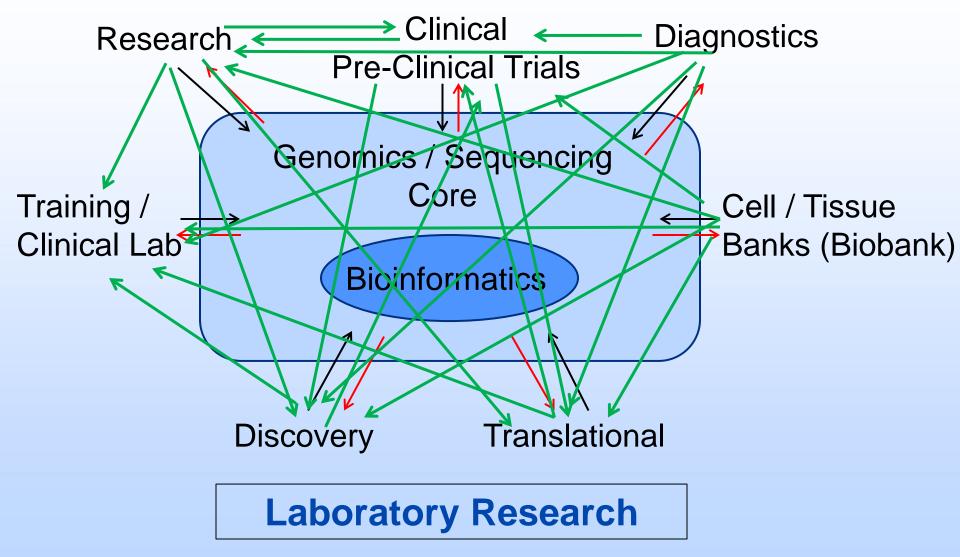
Mayo Medical Genome Facility Chris Kolbert Bruce Eckloff

PerkinElmer / Geospiza Analysis Hugh Arnold, Ph.D Todd Smith, Ph.D Eric Olson, Ph.D Surgeons Charles Beatty, MD Kerry Olsen, MD Jan Kasperbauer, MD Eric Moore, MD

Surgical Residents Steven Olsen, MD Jeff Janus, MD Nicole Tombers

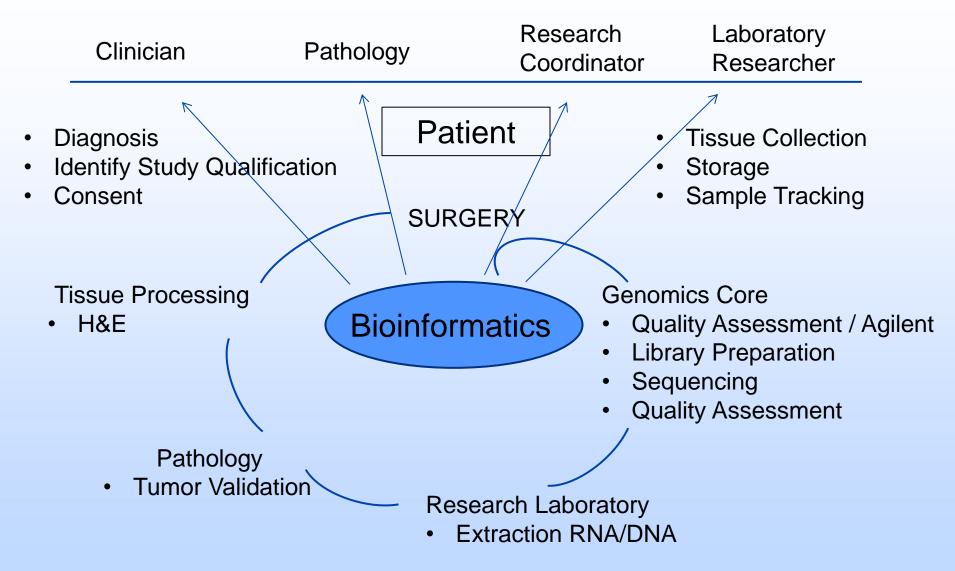
<u>Anatomic Pathology</u> Joaquin Garcia, MD Rondell Graham, MBBS

Mayo Clinic

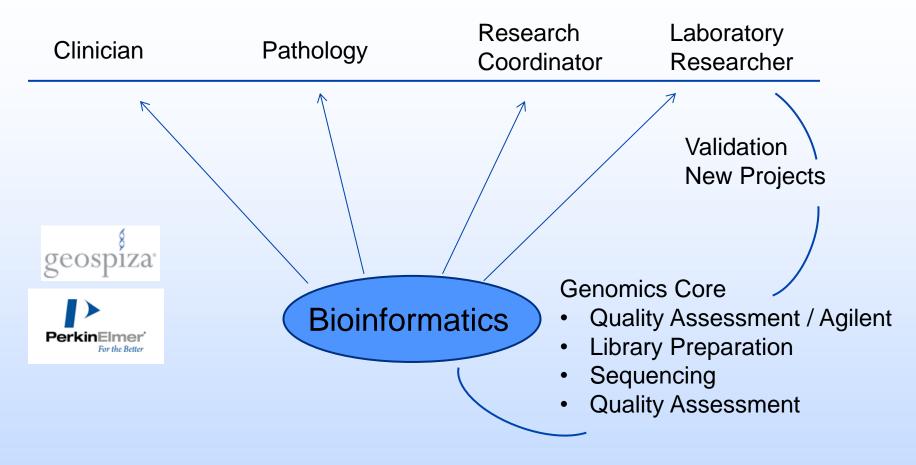

"It's just a little research, it shouldn't be a problem?"

The challenges of collaborative research

- Communication
- Flow of information / data sharing
- Patient confidentiality



Clinicians



Head and Neck NGS Project Workflow

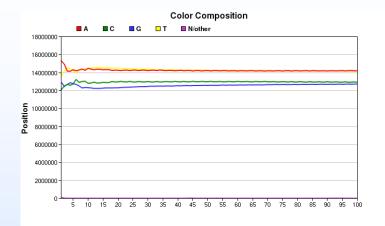
Head and Neck NGS Project Workflow

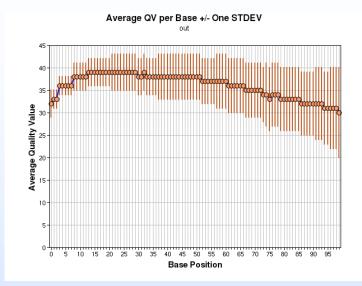
Why GeneSifter?

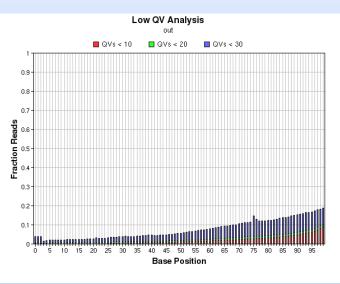
- Secure, Cloud based
- Data Sharing between multiple users
- Easy access to data
 - Standard Computer, iPad, Smartphone
- Intuitive Interface
 - Does not require extensive experience with analysis
- Ability to visualize data
 - Mapped reads
 - Called variants
- Integrated analysis tools
 - Pathway analysis
- Platform / Application independent
 - Allows combined analysis of multiple datasets

GeneSifter in the Genomics Core

- Upload the fastq reads generated
- Run alignment and quality pipelines
- Assess the post alignment sequence quality over entire read length
- Remove data from account




Genomics Core


- Quality Assessment / Agilent
- Library Preparation
- Sequencing
- Quality Assessment

GeneSifter in the Genomics Core

MAYO CLINIC **Clinical Aims**

- Develop markers for patient stratification / risk factors
- Develop tools for early detection of primary/recurrent disease

Clinical Funding

Clinicians

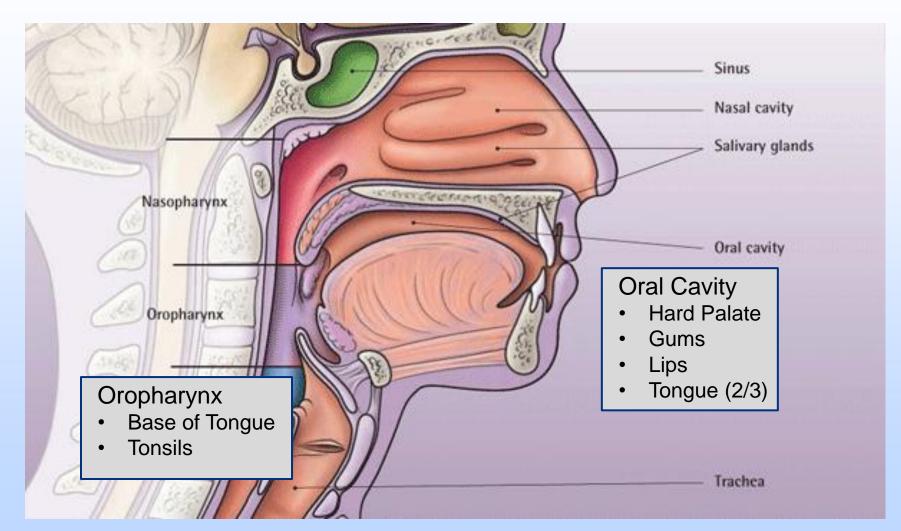
Clinical

Residents

Head and Neck NGS Project

Basic / Bench

Peer Review Funding


- Faculty
- Postdocs / Students
- Technicians

Basic Research

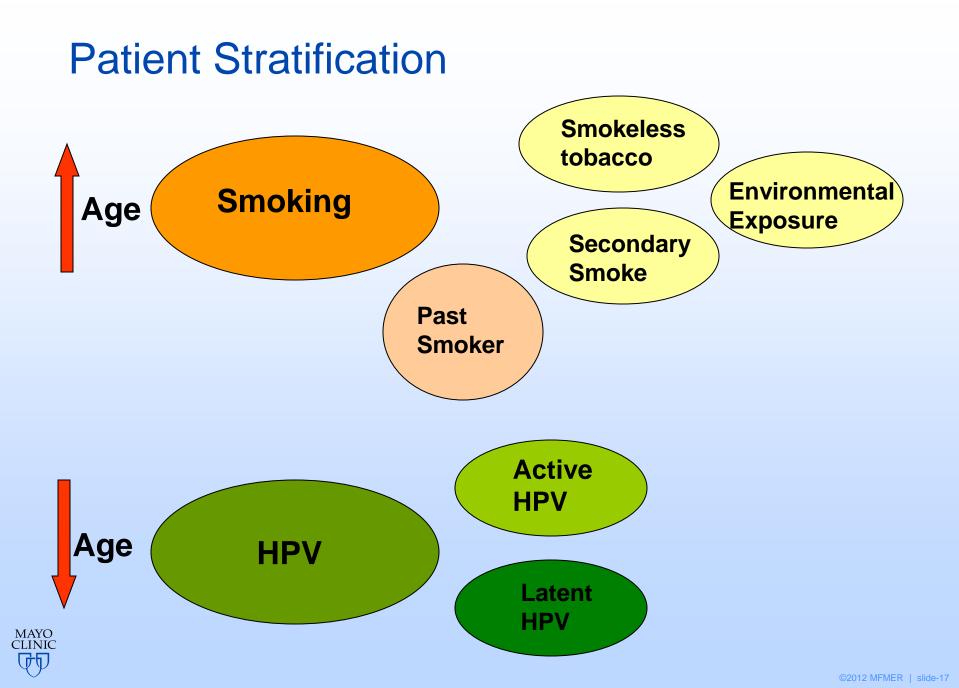
- Mechanisms of transcript dysregulation
- RNA editing
- Identify fusion transcripts

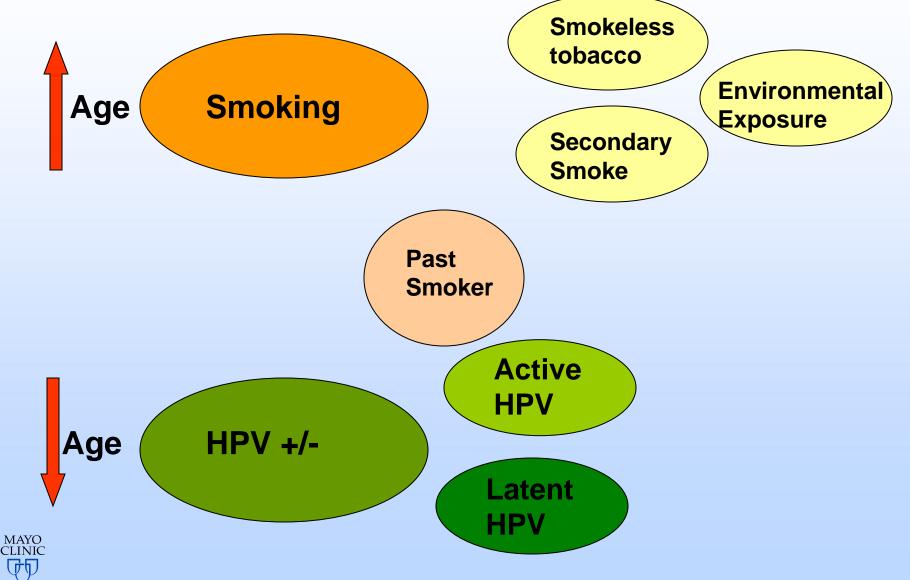
Head and Neck Cancer

Head and Neck Cancer

- 6th most common cancer worldwide
- 95% squamous cell carcinoma (SCC)
- 50% rate of 5 year survival for advanced disease
- Diagnosis lesion detection, lacking tools for early detection
- Treatment Surgery, radiation, chemotherapy

Risk Factors


- Smoking and Drinking
 - 6-7th decade of life, prolonged exposure
- HPV (16,18)
 - Oropharyngeal SCC (30-90% all patients)
 - Younger Patients (<50 years)
 - Lack traditional risk factors
 - Chemo/Radiation sensitive


Patient Stratification

- HPV positive OPSCC
 - Experience better treatment response
 - Ideal candidates for robotic surgical approach
 - Interest in deescalated treatment in patients with HPV associated tumors

Which factors are most significant for the development of disease?

Why choose NGS

- Preliminary data microarray, aCGH
- NGS
 - Gene expression
 - Variant detection
 - Fusion transcripts
 - RNA editing
- mRNA-Seq
- Exome enrichment, NGS

mRNA-Seq transcriptional profiling

- 18 Tumor / Patient Match Normal Tissues
- Illumina GAIIx
 - ~65 million reads per sample
- Data analysis
 - GeneSifter, Geospiza, PerkinElmer

Patient Demographics

TABLE 2. Patient Demographics Grouped by Smoking Status

Patient No.	Age (y)	Sex	Subsite	HPV-16 test result	T stage	N stage	M stage	Grade
Current smokers								
I. I.	56	М	Tonsil	Positive	I.	0	0	4
2	73	Μ	Tonsil	Negative	4a	2c	0	3
3	54	М	Base of tongue	Negative	4	2Ь	0	3
Former smokers								
4	48	Μ	Tonsil	Positive	4a	2c	0	3
5	64	F	Tonsil	Positive	1	2a	0	4
6	66	Μ	Base of tongue	Positive	2	2Ь	0	3
Never smokers								
7	46	Μ	Tonsil	Positive	3	2Ь	I.	3
8	49	F	Tonsil	Positive	2	0	0	4
9	73	Μ	Tonsil	Negative	2	2Ь	0	3

Laborde RR, Wang VW, Smith TM, Olson NE, Olsen SM, García JJ, Olsen KD, Moore EJ, Kasperbauer JL, Tombers NM, Smith DI. 2012. <u>Transcriptional profiling by sequencing of oropharyngeal cancer</u>. *Mayo Clin Proc*. Mar;87(3):226-32.

mRNA-Seq data in Excel

A A		В	С	D	E	F	G	Н		J	К	L	М	N	0	Р	Q	R	S
Index		Chromoso	Start	End	Genes	Smith10.C S	Smith10.C	Smith11.C	Smith11.C	Smith12.C	Smith12.C	Smith13.C	Smith13.C	Smith14.CS	Smith14.C	Smith15.C	Smith15.C	Smith16.C S	Smith16.C
2 3 4	0	1	815	19919	LOC65363	0.49503	2986	0.4317	2604	0.48873	2948	0.28084	1694	0.40849	2464	0.01127	68	0.63064	3804
5 5 7	12	1	663007										11	0.00783	25	0.00094	3	0.01097	35
	13	1	742614	•	512	55 Ro	OWS						4	0.00362	3	0	0	0.00845	7
0	14	1	751449	•	Exp	ort fo	r AN	IOV/	∖, T- t	ests			23	0.03037	39	0.00467	6	0.03583	46
1 2	15	1	845464	•	-	je file						'n	8	0.037	33	0	0	0.01009	9
3											•								
4 5	16	1	850984		colla	abora	tors						135	0.05885	128	0	0	0.01471	32
6 7	17	1	869825										3849	1.55266	3759	0.02602	63	1.52127	3683
8 9	18	1	885830	890958	KLHL17	0.28633	733	0.32188	824	0.35508	909	0.19258	493	0.2332	597	0.00586	15	0.59883	1533
0	19	1	891740	900351	PLEKHN1	1.23918	2979	0.26498	637	0.18386	442	0.58444	1405	0.21298	512	0.00125	3	1.62521	3907
2	20	1	900442	907330	C1orf170	0.559	1696	0.1002	304	0.86618	2628	0.19281	585	1.82531	5538	0	0	0.54219	1645
5 4 5	21	1	924207	.92									815	0.64351	565	0.00683	6	0.67882	596
5 5 7	22	1	938742	•	Gen	erate	ed Li	sts c	of spo	ecific	: targ	gets	2063	0.79495	504	0.04416	28	1.45584	923
1	23	1	945366	•	Rep	eated	d an	alvsi	s for	new	/		4171	0.99453	7279	0.01626	119	1.06599	7802
) 	24	1	1007068		-	paris		J					337	0.11419	367	0.00342	11	0.22091	710
2	25	1	1100820			-		o for	date		بمانح	otion	3	0.00881	9	0	0	0.00196	2
3	26	1	1104940	·	rew	er op	ποη	5 101	uala	a visi	JailZ	alion	13	0.009	19	0.00095	2	0.02511	53
5	27	1	1128751	1131952	TNFRSF18	0.2125	255	4.01667	4820	0.62417	749	0.97083	1165	0.31667	380	0.01167	14	0.205	246
3	28	1	1136569	1139375	TNFRSF4	0.06929	74	0.12547	134	0.41292	441	0.06929	74	0.12547	134	0	0	0.04401	47
)	29	1	1142151	1157274	SDF4	2.67364	5620	2.6118	5490	2.26832	4768	2.98858	6282	2.47431	5201	0.06232	131	1.79924	3782
2	30	1	1157492	1160284	B3GALT6	0.30326	847	0.39957	1116	0.32975	921	0.54386	1519	0.40351	1127	0.00609	17	0.29896	835
3	31	1	1167696	1171965	FAM132A	0.05405	56	2.17954	2258	0.04923	51	0.06467	67	0.04633	48	0	0	0.05985	62
							50		0		51		51						52

GeneSifter

PerkinElmer For the Better

Start an Evaluation >>NGS Analysis >>Microarray Analysis

Watch Webinars

Customer Login

Product Updates

Need Help? info.geospiza@perkinelmer.com 877.WEB.GENE

Upcoming Events

Webinar: Novel Approaches to Automated Sample Prep and Data Analysis for RNA-Seq May 30, 2012 1pm EST, 10am PST

PerkinElmer Owners Group Meeting (USA - East Coast) June 7-8, 2012 Newton, MA

PerkinElmer Owners Group Meeting (Europe) June 12-13, 2012 London, UK

Geospiza develops software systems to accelerate genetic research. Built by biologists for biologists, our products help you quickly see the science.

Data Analysis

Easily visualize and mine the mountain of genetic data produced by Microarray and Next Generation Sequencing (NGS) technology.

LIMS System

Get complex laboratory workflows, data management and advance commercial billing for less time and cost of other LIMS systems.

DNA Sequencing Services

Speed up your research and go from samples to results in as little as 4-6 wks. On-Demand sequencing, data analysis and data storage meld into one complete unit.

Home | Products | Company | News | Support | Contact | Privacy Policy

FINCH Talk!

Industry blog by founder and CSO, Todd Smith

Presentations

Watch a quick video about of our LIMS and Data Analysis solutions

Copyright 2012 PerkinElmer, Inc. All rights reserved.

Upload data

QuickLoad Wizard **Batch Upload** Description: Description: Use this tool to load Affymetrix (CHP or tab-delimited text files), Illumina or CodeLink arrays. The Batch Upload wizard accepts a spreadsheet, in tab-delimited text format, containing data from several different experiments. Run Batch Upload Run QuickLoad Wizard FlexLoad Wizard **Advanced Upload Methods** Description: Description: Using the FlexLoad Wizard will allow you to create and save custom templates for loading almost any other type of This Affymetrix-specific tool allows you to load CEL files and perform RMA, GC-RMA or MAS5 on the probe-level data. file. Users of Agilent, 2-color, or custom chips should use this upload tool. Run FlexLoad Wizard Run Advanced Upload Methods Next Gen File Upload Description: Use this tool to load Next Gen sequencing data files for analysis.

Next Gen File Upload

Next	Gen	File	Un	bad
next	Gen	гпе	op	loau

Step 1 of 3

Type the name of a new folder or select an existing folder for your data. This field is not required.

Directory:

	OR	<select folder="" target=""></select>	•
- 1			
File Type:			
Auto-Detect	Characterize	e files after upload is finished	?
Cancel Next			

©2012 MFMER | slide-24

Initiate Analysis Pipeline

GeneSifter® Analysis Edition

Analysis

- Pairwise
- Projects
- Analysis Job

Import Data

Upload

Create New

- Project
- Condition
- Target (Sar

Inventories

- Files
- Projects
- Experiments
- Gene Sets
- Conditions
- Targets (Sa
- Flexload Pro
- MIAME

Resources

- User's Manu
- Next Gen G
- Tutorials
- Intersector

Administrat

- Preferences
- Account Inf
- Secure Ema
- Logout

User Feedball

Question/Co

	Next Gen Analysis			
obs	Files To Be Analyzed			
ta	Filename		Sample Label	Size
	Cancer_Exome_R1.fastq		-	4.6 GB
w	Cancer_Exome_R2.fastq		-	4.6 GB
	Normal_Exome_R1.fastq		-	4.6 GB
ample)	Normal_Exome_R2.fastq		-	4.6 GB
25				
nts s Samples) protocols nual Guide	Next Gen Analysis Settings Analysis Category: Primary File Type: Genome Analyzer Analysis Type: - Select BWA Reseq PE (Targeted, GATKv3) BWA Reseq PE (v1.1, GATKv3)		Create Experiment(s) upon completion: V Number of Groups:	
or a tion es info nail	BWA WTS PE (GATKv3) ChIP-Seq (Bowtie) Exome PE (BAM, GATKv3) Quality Asessment	e Species		
back		Continue		
Comment				
	·			

Create Project

GeneSifter® Analysis Edition

Main (login: mayo_project) > Create New > Project

Analysis

Pairwise

ProjectsAnalysis Jobs

Upload

Project
 Condition

Files

Projects

Experiments
 Gene Sets

Conditions
 Targets (Samples)
 Flexload Protocols

MIAME
Resources
User's Manual
Next Gen Guide
Tutorials
Intersector
Administration
Preferences
Account Info
Secure Email
Logout
User Feedback
Question/Comment

Import Data

Create New

Target (Sample)
 Inventories

» Create New Project - Choose Method

Project analysis set up organizes array data for making 3 or more simultaneous comparisons.

Create project using conditions

Set up a multi comparison analysis by assigning individual gene sets/samples to groups using already defined conditions. Typically used for comparing multiple treatments and timecourses with or without replicates for each condition.

Create project using conditions...

Create project using new categories

This is a flexible option to assign gene sets/samples to novel groups. Set up a multi comparison analysis by assigning arrays/samples to groups irrespective of defined condition or target.

Create project using new categories...

Create project using targets

Assign individual gene sets/samples to groups using already defined targets for a multi comparison analysis. Typically used for comparing multiple patients, animals, etc. with or without replicates for each target.

Create projects using targets..

MAYO CLINIC

GeneSifter® Analysis Edition		Home Support Geospiza Logout
♦ Analysis		
= Pairwise		Main (login: mayo_project) > Create New > Project
 Projects 	» Create New Project (Step 1 of 3)
 Analysis Jobs 	Select Gene Set	
 Import Data 	Project Title:	ANOVA_Oroph_Risk
= Upload	Description:	Our phone and Daire d Operation
Create New	Description	Oropharyngeal Paired Samples
= Project		
Condition		
Target (Sample)		
 Inventories 		
= Files	Gene Set:	Human Whole Transcriptome: Human Whole Transcr 🔎
Projects		
Experiments	Number of categories:	6
Gene Sets		
Conditions		
Targets (Samples)		
Flexload Protocols		Continue
= MIAME		
* Resources		
User's Manual		
Next Gen Guide		
Tutorials		
Intersector		
 Administration 		
Preferences		
Account Info		
Secure Email		
= Logout		
• User Feedback		
Question/Comment		
		¢
		geospiza
		SCOSPIZA
		Convright 1997-2012 Geospiza, Inc. All Rights Reserved.

Analysis

Pairwise

- Projects
- Analysis Jobs

Import Data

Upload

- Create New
- ProjectCondition
- Target (Sample)

• Inventories

- Files
- Projects
- Experiments
- Gene Sets
- Conditions
- Targets (Samples)
- Flexload Protocols
- MIAME

Resources

- User's Manual
- Next Gen Guide
- Tutorials
- Intersector

Administration

- Preferences
- Account Info
- Secure Email
- Logout

• User Feedback

Question/Comment

		Main (login: mayo_project) > Create New > Proje
» Create New Project (Ste	p 2 of 3): Select normalization, data transformation and create categories	
Title:	ANOVA_Oroph_Risk	
Gene Set:	Human Whole Transcriptome	
	Mapped Reads (NGS) MA = Microarray NGS = Next Gen	
Data Transformation:	No transformation	
Category 1:	Current Smoking Tumor	
Category 2:	Current Smoking Normal	
Category 3:	Former Smoking Tumor	
Category 4:	Former Smoking Normal	
Category 5:	Never Smoking Tumor	
Category 6:	Never Smoking Normal	

Continue

» Create New Project (Step 3 of 3) Select Experiments To Include For Each Category

 Title:
 ANOVA_Oroph_Risk

 Normalization:
 mapped_reads

 Data Transformation:
 None

Category	Experiment	Target	Condition
Never Smoking Normal 💌	Smith10	10 N YN	Normal
Current Smoking Normal 💌	Smith12	12 N OS	Normal
None	Smith14	14 N YP	Normal
Former Smoking Normal 💌	Smith18	18 N OP	Normal
Never Smoking Normal	Smith2	2 N YN	Normal
Former Smoking Normal 💌	Smith20	20 N OP	Normal
Never Smoking Normal	Smith22	22 N ON	Normal
Current Smoking Normal	Smith24	24 N OP	Normal
Former Smoking Normal 💌	Smith4	4 N YP	Normal
Current Smoking Normal 💌	Smith6	6 N OS	Normal
None	Smith8	8 N OS	Normal
Never Smoking Tumor	Smith1	1 T YN	Tumor
Current Smoking Tumor	Smith11	11 T OS	Tumor
None	Smith13	13 T YP	Tumor
Former Smoking Tumor	Smith17	17 T OP	Tumor
Former Smoking Tumor 💌	Smith19	19 T OP	Tumor
Never Smoking Tumor	Smith21	21 T ON	Tumor
None	Smith23	23 T OP	Tumor
Former Smoking Tumor 💌	Smith3	З Т ҮР	Tumor
Current Smoking Tumor	Smith5	5 T OS	Tumor
Current Smoking Tumor	Smith7	7 T OS	Tumor
Never Smoking Tumor 💌	Smith9	9 T YN	Tumor

MAYO CLINIC Continue

)VA_Oroph_Risk								(login: mayo_project)>	Projects >	Analysis > 0	Gene Navigation	> Res
			Identifiers	: TP53		No Stati	istics	•					
Project /		Show: 20 💌	Quality:	N/A 💌	[Search	(1 result	found)					
Search	[1	Reports: Ontology KEGG C	hromosome] [Cluster: 9	Sample	s (r) Ge	enes (r) Sa	amples +	F Genes (r) PCA P	CA2] [Re	sults: Expo	ort Save Vie	w As I
Name										Leg	end:		
Match				~ ~ 'n	0 Ý0	·+ - -					0.25	1	
				Current+Smokin Current+Smokin Former+Smokin⊖	Former+Smoking	Never+Smoking+ [.] Never+Smoking+							
Identi				rent+ rent+ mer+S	Mer+S	er+Sm /er+Sm							
			1	our our	2 Ē	ā ž	Gene TP53						
Af													
Sort: By Expression	-	Statistics: No Stati	stics	•						Show:	20 💌	Search	
												Sa	ive
Search by Gene Symb	ol												
Identifiers:													
TP53													
												Search	1
Sort: By Expression	•	Statistics: No Stati	stics	•						Show:	20 💌		ive
	e												
Search by Chromoson	_												
Search by Chromoson Chromosome:	_												
		Statistics: No Statistics	•							Show:	20 💌	Search	

MAYO CLINIC

Π

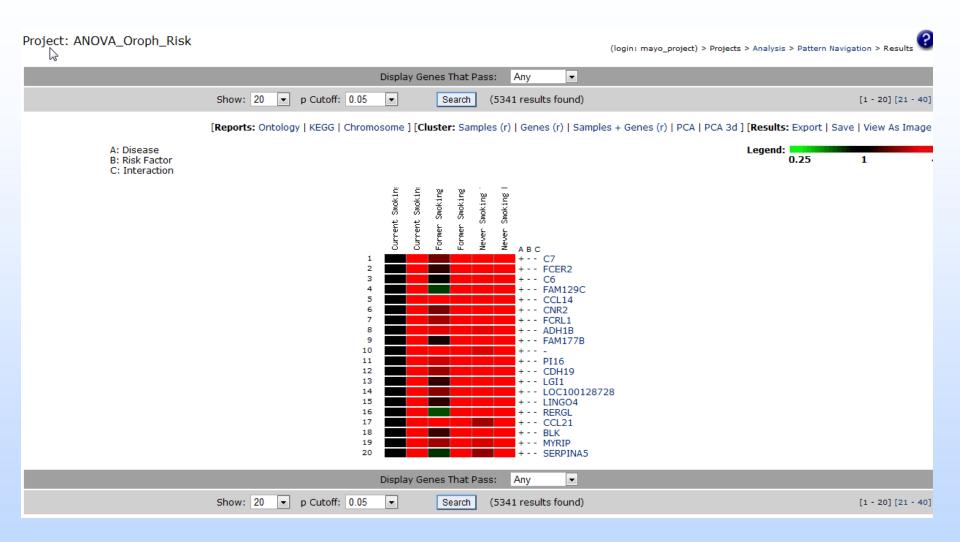
Project: ANOVA_Oroph_Risk

» Gene Summary: Tumor protein p53

» One-Click	Gene Summary™	
Entrez Gene:	7157	OMIM:
Cluster ID:	Hs.654481	
UG Title:	Tumor protein p53	NASOPHARYNGEAL CARCINOMA ANOREATIC CANCER
	TP53	PANCREATIC CANCER LI-FRAUMENI SYNDROME 1; LFS1
Gene ID:		BREAST CANCER
Chromosome		HEPATOCELLULAR CARCINOMA
Cytoband:	17p13.1	OSTEOGENIC SARCOMA
Seq Count:	786	PAPILLOMA OF CHOROID PLEXUS NASORUARYNCEAL CARCINOMA SUSCEPTIBLUTY TO D
Entrez Gene:	7157	 NASOPHARYNGEAL CARCINOMA, SUSCEPTIBILITY TO, 2 ADRENOCORTICAL CARCINOMA, HEREDITARY; ADCC
Gene Name:	tumor protein p53	COLORECTAL CANCER; CRC
Synonyms:	FLJ92943 LFS1 P53 TRP53	
Summary:	This gene encodes tumor protein p53, which responds to diverse cellular	Gene Ontologies:
	stresses to regulate target genes that induce cell cycle arrest, apoptosis,	Biological Process
	senescence, DNA repair, or changes in metabolism. p53 protein is	 activation of caspase activity by cytochrome c
	expressed at low level in normal cells and at a high level in a variety of transformed cell lines, where it's believed to contribute to transformation	apoptosis base-excision repair
	and malignancy, p53 is a DNA-binding protein containing transcription	blood coagulation
	activation, DNA-binding, and oligomerization domains. It is postulated to	cellading
	bind to a p53-binding site and activate expression of downstream genes	cell cycle
	that inhibit growth and/or invasion, and thus function as a tumor	cell cycle arrest
	suppressor. Mutants of p53 that frequently occur in a number of different human cancers fail to bind the consensus DNA binding site, and hence	cell cycle checkpoint
	cause the loss of tumor suppressor activity. Alterations of this gene occur	 cell differentiation cell proliferation
	not only as somatic mutations in human malignancies, but also as germline	cellular protein localization
	mutations in some cancer-prone families with Li-Fraumeni syndrome.	cellular response to glucose starvation
	Multiple p53 variants due to alternative promoters and multiple alternative	 cellular response to ionizing radiation
	splicing have been found. These variants encode distinct isoforms, which	cellular response to UV
	can regulate p53 transcriptional activity. [provided by RefSeq]	determination of adult lifespan DNA dense of adult lifespan
		 DNA damage response, signal transduction by p53 class mediator DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest
		 DNA damage response, signal transduction by p53 class mediator resulting in real cycle areast DNA damage response, signal transduction by p53 class mediator resulting in induction of
		apoptosis
		 DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21
TP53	Search PubMed	cla
		DNA strand renaturation
		 ER overload response induction of apoptosis by intracellular signals
Search for	Homologs:	interspecies interaction between organisms
Select a proj	Search	 mitotic cell cycle G1/S transition DNA damage checkpoint
Select a proj		multicellular organismal development
		 negative regulation of apoptosis
		 negative regulation of cell growth negative regulation of cell proliferation
		 negative regulation of gene-specific transcription from RNA polymerase II promoter
		negative regulation of helicase activity
		 negative regulation of transcription from RNA polymerase II promoter
		nucleotide-excision repair
		 oxidative stress-induced premature senescence positive regulation of gene-specific transcription from RNA polymerase II promoter
		 positive regulation of gene-specific transcription from KNA polymerase II promoter positive regulation of histone deacetylation
		 positive regulation of neuron apoptosis
		 positive regulation of peptidyl-tyrosine phosphorylation
		 positive regulation of thymocyte apoptosis
		 positive regulation of transcription from RNA polymerase II promoter
		protein complex assembly protein localization
		protein localization protein tetramerization

protein tetramerization
Ras protein signal transduction
regulation of apoptosis

©2012 MFMER | slide-31


• (Current	Smoking	Tumor	[Control]	
-----	---------	---------	-------	-----------	--

- Current Smoking Normal
 Former Smoking Tumor
 Former Smoking Tumor
 Never Smoking Tumor
 Never Smoking Tumor

Show All Genes

िन्ह

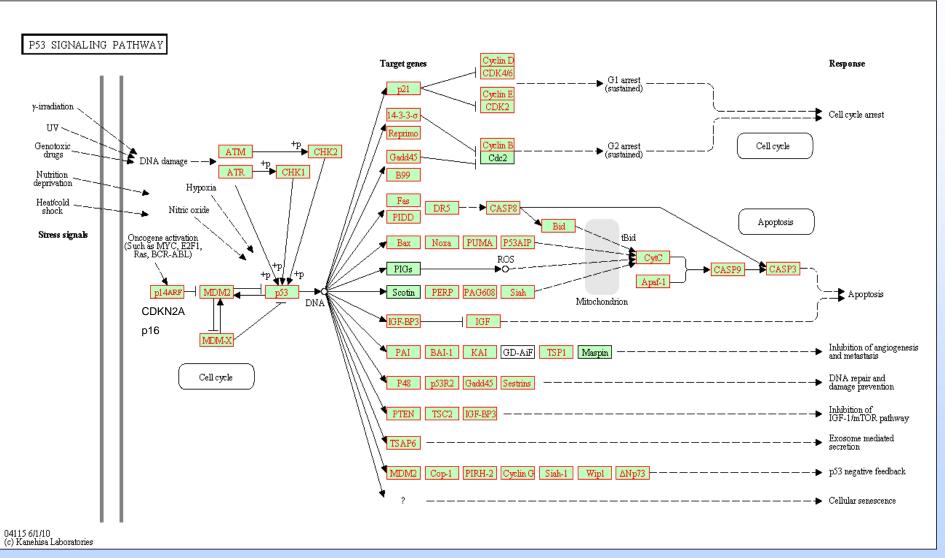
oject Analysis: ANOVA_Oroph	_KISK	[Gene Navigation Gene Function Pattern Navigation Cluster Export Two-V
Search by Name		
Name:		
Match: All Words	Sort: By Expression 💌 Statistics: No Statisti	ics Show: 20 Search
Search by Accession, UniGene, Ent Identifiers:	rez, Affy Probe Set, Illumina or CodeLink ID	
	Saved Searches: Select	
Affy ST IDs		
Sort: By Expression	Statistics: No Statistics	Show: 20 Search Sa
Search by Gene Symbol		
Identifiers:		
Sort: By Expression	Statistics: No Statistics	Show: 20 Search S
Search by Chromosome		
Chromosome:		
Sort: By Expression 💌	Statistics: No Statistics	Show: 20 💌 Search

MAYO CLINIC

Transcriptional Profiling

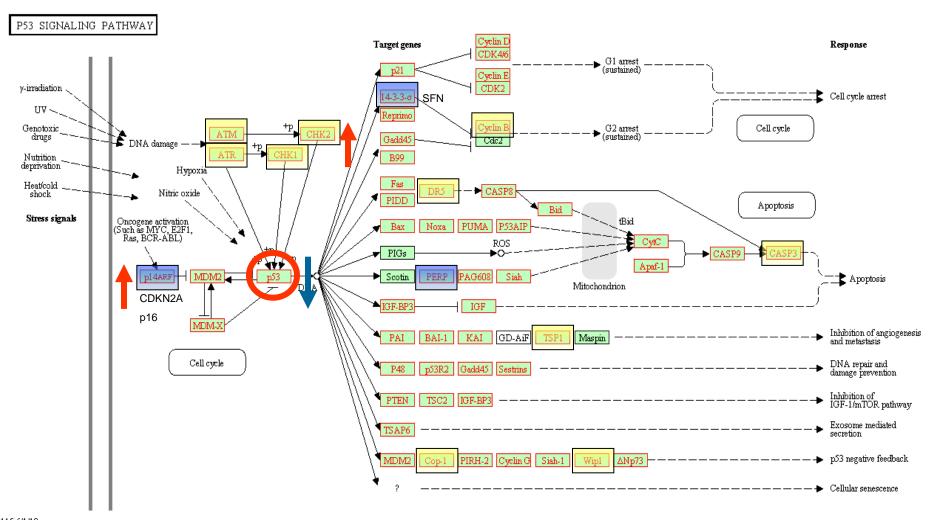
- Differentially regulated genes
 - HOX, MMPs, T cell signaling, Immune responsive gene targets
- Regulatory Non-coding Transcripts
- Pathway analysis (GeneSifter)
 - Is there a difference between groups divided by risk factor?

Project: ANOVA_(Condition 1 : Current Smoking Tumor Condition 2 : Current Smoking Normal Condition 3 : Former Smoking Tumor Condition 4 : Former Smoking Normal Condition 5 : Never Smoking Tumor Condition 6 : Never Smoking Normal				Tota	Is	z-score
		Pathway	Genes	KEGG		ene Set	2 50010
		Pathways in cancer			96	326	2.02
		Cell cycle	Ē	a a	76	124	9.53
		RNA transport	Ē	Ā	75	156	6.84
		Neuroactive ligand-receptor interaction	(E)	Ā	57	317	-2.87
		Purine metabolism	1	a	55	161	2.81
		Spliceosome	:	a	53	126	4.55
		Cytokine-cytokine receptor interaction		19 19 19 19 19 19 19 19 19 19 19	51	275	-2.44
		MAPK signaling pathway	:	a	51	271	-2.32
A: D		Systemic lupus erythematosus		a	50	135	3.35
B: R		Ubiquitin mediated proteolysis	:	a	48	135	2.94
C: I		Oocyte meiosis	E	a	46	112	4.04
		Pyrimidine metabolism	:	<u>a</u>	43	99	4.35
		Small cell lung cancer	E	<u>a</u>	36	85	3.79
		Calcium signaling pathway	5		29	177	-2.62
		DNA replication			28	36	7.40
		p53 signaling pathway			28	68	3.16
		Pancreatic cancer	E	8	25	70	2.14
		Base excision repair	5	8	23	34	5.81
		Proteasome	6	8	23	44	4.25
		Nucleotide excision repair Osteoclast differentiation	6	8	22 22	44	3.90
		Natural killer cell mediated cytotoxicity	-	e	22	128 134	-2.00
		Tight junction	6		20	134	-2.58
		Vascular smooth muscle contraction	0	8	18	125	-2.71
		Aminoacyl-tRNA biosynthesis	Ē	ä	17	41	2.49
		Olfactory transduction	Ē	ā	17	386	-9.58
		Bladder cancer	Ē	A	16	42	2.01
		Homologous recombination	Ē	Ā	16	28	3.98
		Mismatch repair	Ē	ā	16	23	4.99
		Basal transcription factors	Ē	Ā	15	37	2.23
		RNA polymerase	Ē	A	15	29	3.37
		Pancreatic secretion	:	a	14	102	-2.60
		Toll-like receptor signaling pathway	E	8	13	102	-2.83
		Selenoamino acid metabolism	E	a	12	26	2.54
		B cell receptor signaling pathway	E	8	11	75	-2.04
		Drug metabolism - cytochrome P450	E		10	73	-2.20
		One carbon pool by folate		a a a a a a a a a a a a a a a a a a a	10	18	3.03
		RIG-I-like receptor signaling pathway	5	&	10	71	-2.09
		Ribosome	8	8	8	89	-3.47
		Glycerolipid metabolism	8	ē	6	50	-2.10
		Intestinal immune network for IgA production	6-) (-)	a R	5 4	46	-2.19
		Fat digestion and absorption Viral myocarditis	e 6	ا	4	45 68	-2.47 -3.63
		Allograft rejection	0	80 (2)	2	35	-3.63
		Autoimmune thyroid disease	e-	8 8	2	50	-2.62
		Linoleic acid metabolism	Ē	E.	2	28	-2.16
		Type I diabetes mellitus	Ē	a	2	41	-2.96
		Ascorbate and aldarate metabolism			1	26	-2.47
		Graft-versus-host disease	Ē	a	1	37	-3.12
					-		



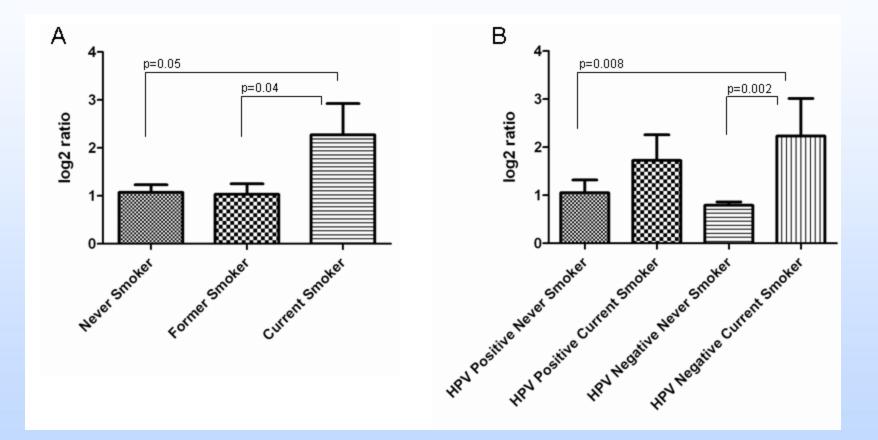
Export Report

6


Pathway Analysis Smoking Status

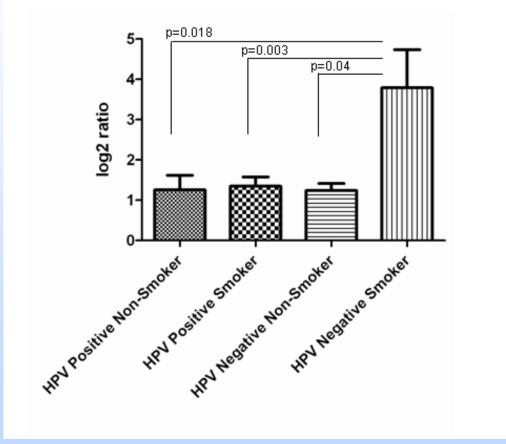
Never smokers

04115 6/1/10 (c) Kanehisa Laboratories

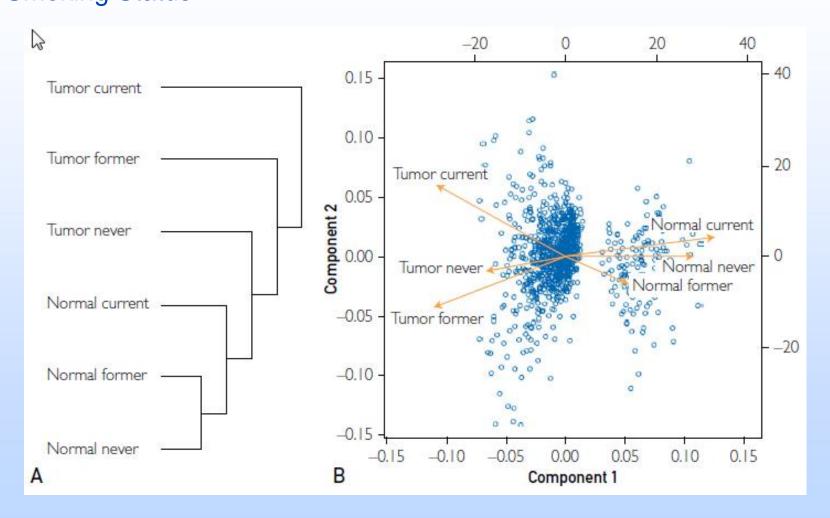


Validation Assays

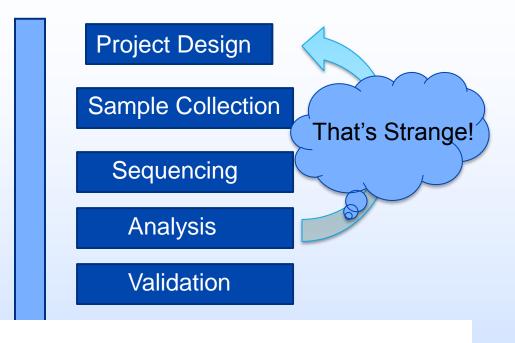
- Validate in larger number of tumor/normal pairs
- Nanostring nCounter digital counter
 - 96 gene codesets
 - 44 sample pairs
 - 100ng input RNA
- qPCR, Fluidigm also options



$\ensuremath{\mathsf{ATR}}$ ataxia telangiectasia and Rad3 related



CHEK2



Global Gene Expression Smoking Status

The Analysis Process Inspires New Ideas

The Laryngoscope © 2011 The American Laryngological, Rhinological and Otological Society, Inc.

Linking Expression of *FOXM1*, *CEP55* and *HELLS* to Tumorigenesis in Oropharyngeal Squamous Cell Carcinoma

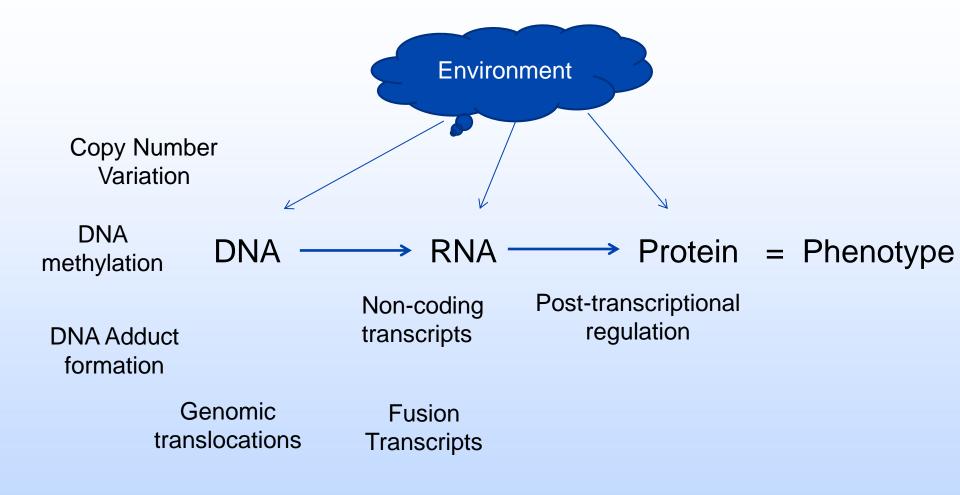
Jeffrey R. Janus, MD*; Rebecca R. Laborde, PhD; Alexandra J. Greenberg, BA; Vivian W. Wang, PhD; Wei Wei, PhD; Anna Trier; Steven M. Olsen, MD; Eric J. Moore, MD; Kerry D. Olsen, MD; David I. Smith, PhD

Additional Projects

HPV in oropharyngeal squamous cell carcinoma: Assessing virus presence in normal tissue and activity in cervical metastasis. In Press. *Laryngoscope*

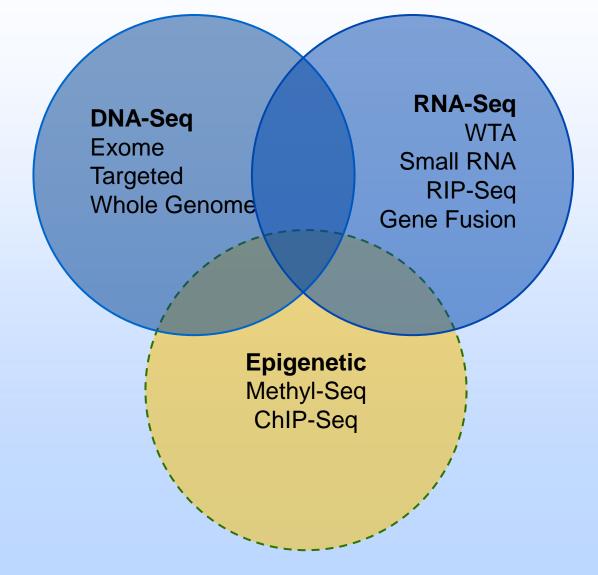
Laborde RR, Janus JR, Olsen S, Wang VW, Garcia JJ, Graham R, Moore EJ, Kasperbauer JL, Price D, Olsen, Price M, Halling G and Smith DI. 2012.

Quantification of Human papillomavirus transcriptional activity by massively parallel sequencing and digital counting protocols in oropharyngeal squamous cell carcinoma. Submitted


Laborde RR, Olsen SM, Garcia JJ, Wang W, Olsen KD, Moore EJ, Kasperbauer JL, Tombers NM, Smith DI. 2012.

Overexpression of *CDC7* and other cell cycle regulatory genes is associated with tumor stage in oropharyngeal squamous cell carcinoma

Rebecca R. Laborde, Alexandra J. Greenberg, Jeffrey R. Janus[,] Vivian W Wang, Wei Wei, Steven Olsen[,] Eric J. Moore[,] Kerry D. Olsen[,] Nicole M. Tombers[,] David I. Smith



The power of multiple datasets

Generating Multiple Datasets Inter-Application Workflows

Clinical Application: Saliva Screening Test

- Detection of disease by palpation of lesion and biopsy
 - Primary Disease
 - Recurrent Disease
- Clinicians in need of non-invasive screening tool
 - Saliva or swab biopsy

What to target?

- HPV ?
 - Found in normal tissues
- Disease specific gene mutations
 - Develop a matrix detectable in shed epithelial cells
- Patient Tumor Specific gene mutations
 - Early detection of recurrent disease
 - Individualized medicine

Exome Sequencing Illumina TruSeq Library and Exome Enrichment kit

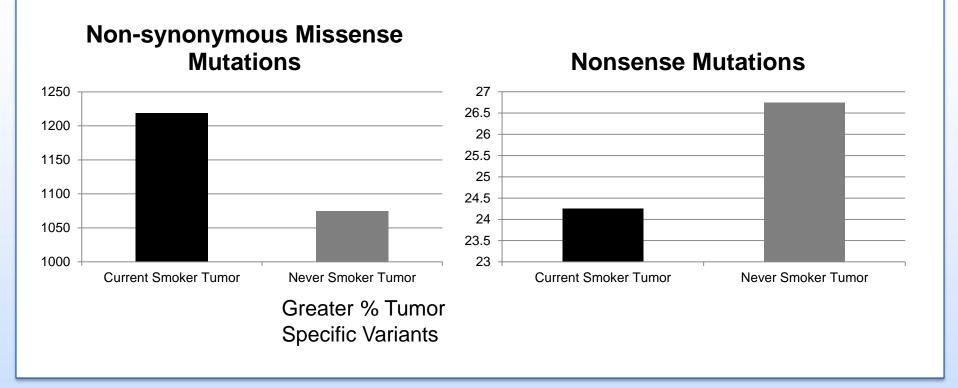
<u>Sample</u>	<u>Age</u>	<u>Smoking</u>	<u>HPV</u>
1	54	Current	Neg
2	46	Current	Neg
3	56	Current	Neg
4	69	Current	Neg
5	37	Never	Positive
6	57	Never	Positive
7	48	Never	Positive
8	54	Never	Positive

Exome data in Excel

A	B C D E	F G	H	J	K L	M N	1 0	Р	Q	R S	Т	U	V	W	×	Y	Z	AA	AB	AC
	Sumitiping(SiChr Pos	s_DIS4In1.Ref Entrez_id	TSpecivs Ti R	ef Var G	ienc Ref (Varire tot	alr %T	imor confiden	Ref I	Vvar Geno	NRefreads	N Altreads T	otal Nireads 🛛 🗄	×N	Normal confide	(TSpec vs T	Region	functionG	SNP Type	Prediction
2 z	S Pt4 1	3410980 MEGF6	T T	GT	G 8	7	15 47%	Changed	T I	N TT	15	0	15	0%	No Change	T	EXON CDS	missense	Nonsynonymou:	TOLERATED
3 z	S Pt4 1	3422767 MEGF6	TN C	ТТ	T 1	15	16 94%	Changed	C 1	т ст	18	16	34	47%	Changed	TN	-	missense	-	-
4 z	B Pt1 1	3655878 KIAA0495	N T	СТ	T 142	34 1	76 19%	No change	T (с тс	22	16	38	42%	Changed	N	5'UTR	utr-3	-	Not scored
5 z	B Pt7 1	3655914 KIAA0495	T C	T C	T 160	53 2	13 25%	Changed	C 1	т сс	175	8	183	4%	No Change	T	5'UTR	utr-3	-	Not scored
6 z	B Pt2 1	36560 <u>93 KIAA0495</u>	T G	A G	A 214	71 28	85 25%	Changed	G /	4 GG	108	26	134	197	No Change	T	5'UTR	utr-3	-	Not scored
7 z	B Pt4 1	788									52	54	106	51%	Changed	N	-	missense	-	-
8 z	B Pt7 1	78									45	0	45	0%	No Change	T	EXON CDS	missense	Nonsynonymou:	TOLERATED
9 z	B Pt7 1	78									40	0	40	0%	No Change	Т	EXON CDS	missense	Nonsynonymou:	TOLERATED
10 z	B Pt4 1	78	00 %	- 1	1				"		53	24	77	31%	Changed	N	-	missense	-	-
11 z	X B Pt4 1	$129 \sim 24$	00 "p	OTe	enti		var	lants			853	57	410	147	No Change	T	EXON CDS	missense	Nonsynonymou:	TOLERATED
12 z	X B Pt3 1	129		<u> </u>							287	76	363	21/	No Change	T	EXON CDS	missense	Nonsynonymou:	TOLERATED
13 z	X B Pt4 1	129									278	71	349	20%	No Change	Reference	EXON CDS	missense	Nonsynonymou:	TOLERATED
14 z	X B Pt7 1	129									248	79	327	24%	No Change	Reference	EXON CDS	missense	Nonsynonymou:	TOLERATED
15 z	X B Pt4 1	129									277	72	349	21%	No Change	Т	EXON CDS	missense	Nonsynonymou:	: TOLERATED
16 z	X B Pt3 1	129									290	79	369	21/	No Change	Т	EXON CDS		Nonsynonymou:	
17 z	X B Pt7 1	129									252	80	332	24%	No Change	Reference			Nonsynonymou:	
18 z	B Pt4 1	1292									128	122	250	49%	Changed	N	EXONICES		Nonsynonymou:	
19 z	B Pt6 1	12921400 FRAMERZ	1 0	0 4	0 100	51 10	JU 34%	Changeo	~ •	- MM	51	11	62	18%	No Change	T	EXON CDS		Nonsynonymou:	
20 z	B Pt7 1	16095031 FBLIM1	TN G		A 4		11 64%		G /		9	3	12	25%	Changed	TN	EXONICES		Synonymous	N/A
21 z	B Pt4 1	16112790 FBLIM1	N C	TC			18 11%		C 1	т ст	22	17	39	44%	Changed	N	-	utr-3	-	-
22 z	S Pt3 1	16341139 HSPB7	T C		G 28		52 46%			G CC	33	10	43	23%	No Change	T	3'UTR	utr-3	-	Not scored
23 z	S Pt2 1	16341139 HSPB7	N C		C 30		39 23%			G CG	19	18	37	49%	Changed	N	3'UTR	utr-3	-	Not scored
24 z	B Pt7 1	16736367 SPATA21	T G		A 12		20 40%		G /		16	5	21	24%	No Change	1	EXONICDS		Nonsynonymou:	
25 z	B Pt4 1	16748087 SPATA21	N G		G 16		17 6%		G /	A GA	10	10	20	50%	Changed	N	NON-GENIC		NA	Not scored
26 z	X B Pt5 1	16891365 NBPF1	Reference G		G 864	258 112			G /		510	158	668	24%	No Change	Hererence	NON-GENIC			Not scored
27 z	X B Pt1 1 X B Pt3 1	16891696 none	TA	C T T A	C 225	78 30		Changed	Τ (Δ 1	C TT T AA	96 177	24	120	20%	No Change	T	NON-GENIC EXONICDS			Not scored
28 z 29 z	X B Pt5 1	16892274 NBPF1 16892279 NBPF1	ŤĆ		T 135 A 50		211 36% 38 49%	onangea	Č /		177	30 4	207	14% 6%	No Change	T			Nonsynonymou:	
23 z 30 z	X B Pt1 1	16892279 NBPF1	T C	A C			38 38%				59 26	4	63 30	13%	No Change	T	EXON CDS EXON CDS		Nonsynonymou: Nonsynonymou:	
30 z	X B Pt3 1	16892279 NBPF1	T C		A 55		37 42%		čí	A CC	161	33	194	17%	No Change No Change	T	EXONICOS		Nonsynonymou: Nonsynonymou:	
32 z	X B Pt4 1	16892407 none	N A		A 296		74 21/	No change		G AG	399	143	542	26%	Changed	N	NON-GENIC			Not scored
33 z	X B P3 1	16903972 none	TT	Ст			50 28%	Changed	T C		40	10	50	20%	No Change	T	NON-GENIC			Not scored
34 z	X B Pt3 1	16909057 NBPF1	Ť Á		C 78		12 30%	Changed	à		66	11	77	14 /	No Change	T	EXON CDS		Nonsynonymou:	
35 z	X B Pt2 1	16909057 NBPF1	T A		C 107		47 27%		A C		42	10	52	19%	No Change	Ť	EXONCDS		Nonsynonymou:	
36 z	X B Pt1 1	16909057 NBPF1	T A		C 58		77 25%		A (20	5	25	20%	No Change	Ť	EXONICES		Nonsynonymou:	
37 z	X B Pt5 1	16909057 NBPF1			A 60		77 22/		A C		52	21	73	29%	Changed	Ň	EXONICDS		Nonsynonymou:	
38 z	X B Pt6 1	16912133 NBPF1	TG		A 46	16 6	52 26%		G A	A GG	26	4	30	13%	No Change	T	EXONICES		Nonsynonymou:	
39 z	X B Pt4 1	16915365 NBPF1	TN G	ТТ	T 1		18 94%	Changed	G 1	T GT	19	16	35	46%	Changed	TN	-	missense		-
40 z	X B Pt8 1	16916395 NBPF1	т т	A T	A 46	25	71 35%	Changed	T 🥖	A TT	83	19	102	19%	No Change	Т	EXON CDS	missense	Nonsynonymou:	DAMAGING
41 z	X B Pt1 1	16916514 none	ТС	T C	T 139	46 18	85 25%	Changed	C 1	T CC	56	5	61	8%	No Change	Т	NON-GENIC	outsideCc	NA	Not scored
42 z	X B Pt8 1	16935197 NBPF1	Reference A	G A	G 271	82 35	53 23%	No change	A (G AA	302	82	384	21/	No Change	Reference	5'UTR	utr-5	-	Not scored
43 z	X B Pt7 1	16935197 NBPF1	Reference A		A 271	69 34		noonange	A (258	80	338	24%	No Change	Reference		utr-5	-	Not scored
44 z	B Pt8 1	17197597 LOC10028892			A 124		76 30%		G /		151	46	197	23%	No Change	Т	EXONICDS		Synonymous	N/A
45 z	B Pt1 1	17197609 LOC10028892		СТ			57 20%	No change	ТΟ	с тс	30	11	41	27%	Changed	N	EXONICDS		Synonymous	N/A
46 z	B Pt2 1	17197609 LOC10028892			C 143		39 24%	No change	Т	C TT	66	17	83	20%	No Change	Reference	EXONICES		Synonymous	N/A
47 z	B Pt5 1	17256645 CROCC	T G		A 61		38 31%		G /		61	17	78	22%	No Change	T	EXON CDS		Synonymous	N/A
48 z	B Pt6 1	17265507 CROCC	N C		C 49		50 18%		C 1	т ст	8	8	16	50%	Changed	N	EXONICES		Nonsynonymou:	
49 z	B Pt4 1	17265507 CROCC	N C	T C			19 11%		C 1	T CT	14	17	31	55%	Changed	N	EXONICES		Nonsynonymou:	
50 z	B Pt4 1	17271936 CROCC	N C		C 53		53 0%	Nochange		G CG	88	31	119	26%	Changed	N	NON-GENIC		NA	Not scored
51 z	B Pt6 1	17271936 CROCC	N C		C 177		34 9%			G CG	29	11	40	28%	Changed	N	NON-GENIC		NA	Not scored
52 z	B Pt6 1	17275337 CROCC	T C	ŢC			77 25%			T CC	15	1	16	6%	No Change	T	EXON CDS		Nonsynonymou:	
53 z	B Pt8 1 B Pt2 1	22418253 CDC42		TO			22 41% 32 31%		GI	T GG	13	4	17 15	24%	No Change	I T	DOWNSTRE		-	Not scored
54 z 55 z	B Pt2 1 B Pt7 1	22418256 CDC42 22418256 CDC42	T G	TO			32 31% 21 29%		G N G 1	N GG T GG	15 13	2	15	0% 13%	No Change No Change	T	DOWNSTRE DOWNSTRE		_	Not scored
55 z 56 z	B Ptf 1		N G		G 23		21 232		GI	I GG I GT	16	2	25	36%	Changed	N	DOWNSTRE			Not scored Not scored
50 z	B Pt2 1	22418260 CDC42		A C			26 27%				13	0	13	367. 0%	No Change	T	-	utr-3	-	-
58 z	B Pt5 1	22418284 CDC42	TG	TO			21 43%		GI		8	2	10	20%	No Change	T	DOWNSTRE		-	Not scored
59 z	X B Pt4 1		TT		G 10	-	19 47%				28	6	34	18%	No Change	T	3'UTR	utr-3	-	Not scored
en -	V D D.2 1		÷ ċ	TO			15 40.4				10	1	11	9./	No Change	Ť	2'11TD			Netwood

Exome

											KEGG	Export
Chrom.	Position	G	ene	Region	Туре	dbSNP	Exo	1 Pop	Low Cov	Pop Ref.	T: Var + N	: Var +
chr1	1,849,529	тм	ENEO	CDS	0.01/	re09640	057	0		0 1		R
chr1	2,458,010	P							т	otals	z-score	
chr1	2,488,153	LOC100133	Pathway	,			Genes		i List	Gene Se	t	R
chr1	6,279,370	RI	Allograft	-			E	8	4	3:		5
chr1	6,614,535	N	Graft-ver				E	a	4	33		
	0,014,000		Type I di				E	a	4	38		4
chr1	Dati	ent 687	Autoimm				E	a	4	4(_
chr1	Fall		p53 sign				E	a	5	62	2 3.07	7 Y
chr1						nsin homolog						R
chr1		Τα		bospono protein								R
chr1	(Comm		protein	-							R
chr1			PERP,	TP53 ap	optosi	is effector						Т
chr1		Fumor-	Viral myo	carditis			:	a	5	64	4 2.99	Э м
		Nor	Endomet	rial cano	er		:	a	4	53	1 2.68	в 🗖
chr1		N	Inositol p	phospha	te met	tabolism	E	a	4	56	6 2.45	
chr1		IN	Antigen (processi	ng and	presentation	:	a	4	57	7 2.41	1 R
chr1			Fatty aci	d biosyn	thesis		:	a	1	(6 2.36	5 R
chr1	16,332,665	C1	Phagoso					a	7	133		Y
chr1	16,532,498	ARI	Bladder				E	a	3	39		3
			RNA tran	sport			E	a	7	14(-
chr1	16,577,908	FE	Asthma				E	a	2	22		
-cl	16,5					ted cytotoxicity		a	6	118		
			ABC tran	sporters	5			a	3	44	4 2.03	3


Multi-Sample Comparisons VarScan

» Analysis Res	ult File: Multi-Sampl	e Variant Report (SQLite) Nur	nber of Result
Can_score	• >4	+ 🖸 OR	
Prediction -	r possibly*	-	
T_663A: Effect	non*	-	
Show: 20 🔻	•	Color Variants: 🗹	
Search Reset			
Expand All Collap	se All		

																KEGG Ex	port
Chrom.	Position	Gene	Region	Туре	dbSNP	Exon Pop	Low Cov Pop	Ref.	N_663B: Var +	T_663A: Var +	Status	Pval	Ratio	Can_score	Cosmic	Predictio	on 👘
chr1	1,019,753	C1orf159	CDS	snv	rs117262434	0	0	Α	NC	R	Somatic	0.0371	0.82	17.13	0	possibly dama	iging
chr2	119,752,005	MARCO	CDS	snv	-	0	0	С	NC	Y	Somatic	0.0261	0	36.29	0	possibly dama	iging
chr2	180,835,580	CWC22	CDS	snv	-	0	0	А	NC	R	Somatic	2.7146e-06	1.11	29.21	0	possibly dama	iging
chr5	140,176,432	PCDHA@, PCDHA1, PCDHA2	CDS	snv	-	0	0	С	NC	Y	Somatic	1.3408e-07	1.15	40.44	0	possibly dama	iging
chr6	31,778,371	HSPA1L	CDS	snv	-	0	0	С	NC	Y	Somatic	9.8186e-09	0.64	31	0	possibly dama	Iging
chr6	160,560,884	SLC22A1	CDS	snv	-	0	0	A	NC	W	Somatic	0.2089	0.25	16	0	possibly dama	iging
chr7	151,970,945	MLL3	CDS	snv	-	0	0	G	NC	К	Somatic	0.004	0.01	4.24	1	possibly dama	Iging
chr8	24,771,356	NEFM	CDS	snv	-	0	0	т	NC	К	Somatic	0.193	0.5	26	0	possibly dama	iging
chr10	18,439,813	CACNB2	CDS	snv	-	0	0	С	NC	Y	Somatic	0.0085	0.48	18.5	0	possibly dama	iging
chr11	64,599,025	CDC42BPG	CDS	snv	-	0	0	С	NC	Y	Somatic	0.0433	2.33	41	0	possibly dama	iging
chr12	108,004,005	BTBD11	CDS	snv	-	0	0	С	NC	Y	Somatic	0.0086	0.33	26	0	possibly dama	aging
chr15	51,766,636	DMXL2	CDS	snv	-	0	0	G	NC	R	Somatic	0.0024	1.2	43.42	0	possibly dama	iging
chr15	91,436,551	FES	CDS	snv	-	0	0	А	R	R	Germline	1	0.17	4.13	0	possibly dama	aging
chr16	57,758,732	CCDC135	CDS	snv	rs2923144	5	0	С	М	М	Germline	1	0	4.19	0	possibly dama	iging
chr17	77,111,776	hCG_1776007	CDS	snv	-	0	0	С	NC	S	Somatic	0.0365	2	34.33	0	possibly dama	aging
chrX	24,073,777	EIF2S3	CDS	snv	-	0	0	С	NC	М	Somatic	0.0134	0.88	47.67	0	possibly dama	iging
chrX	77,913,338	ZCCHC5	CDS	snv	-	0	0	G	NC	К	Somatic	0.1833	1.2	19.18	0	possibly dama	iging

Variant Patterns in Head and Neck Cancers

MAYO CLINIC

Generate Gene Lists

chr_pos	Description	Read Depth	Ref Frac	Alt Frac	Score	Gene	Change
chr2_97815072	G113, T19	132	0.856	0.144	171.29	ANKRD36	E359*
chr10_1169307 95	G80, T33	113	0.708	0.292	787.56	ATRNL1	E365*
	000,100	110	01100	0.202	101.00		2000
chr8_2857565	G60, T18	78	0.769	0.231	374.29	CSMD1	C2706*
chr4_15325195 3	C70, T10	80	0.875	0.125	91.76	FBXW7	W351*
chr4_44680768	A3, G15	18	0.833	0.167	24.37	GUF1	W43*
chr5_23524525	C80, T16	96	0.833	0.167	248.97	PRDM9	R345*
chr10_8972074 1	C120, T15	135	0.889	0.111	91.07	PTEN	Q298*
chr11_6781519 5	G86, T12	98	0.878	0.122	117.71	TCIRG1	E463*
chr1_43149102	A59, G75	134	0.56	0.44	1664.78	YBX1	W65*

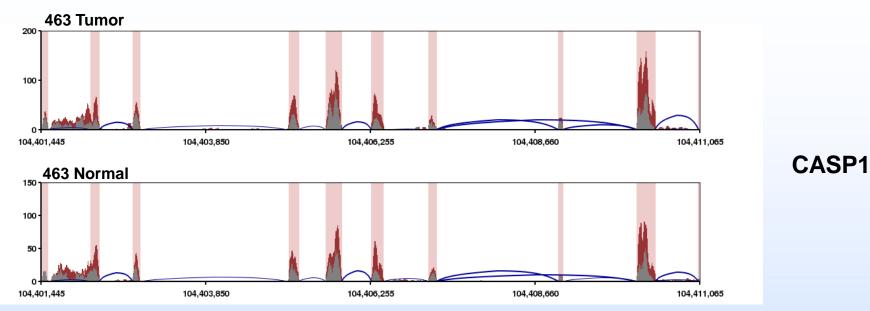
chromosome chr8 coordinates 2857516 - 2857615	<< < > >>	Bases Key
center coordinate 2857565 show read bases chromosome chr8 Go		Quality Key g0 g10 g20+

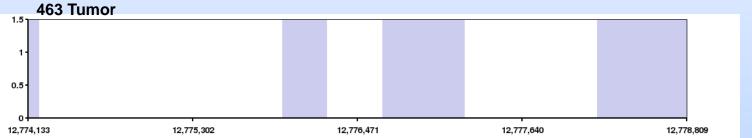
183 reads displayed

MAYO CLINIC F

	2857520	2857540	2857560	2857580	2857600
	1	l l	1	1	1
Reference	CTTGCAGGCATATCCTCAC	GGAAGTTCCCACAAGCCG	GAAACCAGGATT <mark>G</mark> CACTGGT	AAACCACCGTGTCTCTGTAA	CTGAAGCCATCTCCACTAATGTG
Consensus			_		

	<i>, ,</i>
······	
T	,
	,
······································	
· · · · · · · · · · · · · · · · · · ·	
	• •
	• •
	• •
	• •
······································	
· · · · · · · · · · · · · · · · · · ·	
	• •
	• •
	• •
	**
······	• •
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• •
· · · · · · · · · · · · · · · · · · ·	• •
•••••••••••••••••••••••••••••	• •
	• •
gtaaa	• •
· · · · · · · · · · · · · · · · · · ·	
······································	• •
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• •
	• •
· · · · · · · · · · · · · · · · · · ·	11
	• •

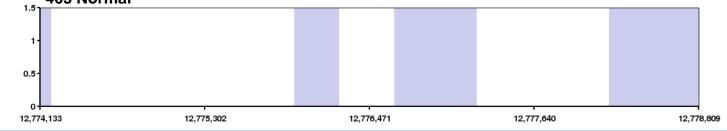

12 MFMER | slide-54


Comparing Exome with RNA-Seq

 $\overline{Q}\overline{p}$

									463 R	NA-Seq	463 E	Exome	
									т	Ν	т	Ν	
Chrom.	Position	Gene	Region	Туре	dbSNP	Exon Pop	Low Cov Pop	Ref.	6745: Var +	6746: Var +	6747: Var +	6748: Var +	
chr1	6,278,414	RNF207	CDS	snv	rs709209	0	0	А	NC	R	R	NC	
chr1	43,149,102	YBX1	CDS	snv	-	0	0	G	R	NC	R	NC	
chr2	10,263,618	RRM2	CDS	snv	-	0	0	G	К	NC	K	NC	
chr2	27,600,585	ZNF513	CDS	snv	-	0	0	С	м	NC	М	NC	
chr2	219,268,052	CTDSP1	CDS	snv	-	0	0	A	R	NC	R	NC	
chr5	34,821,902	RAI14	CDS	snv	-	0	0	G	R	NC	R	NC	
chr5	177,638,968	AGXT2L2	CDS	snv	-	0	0	A	R	NC	R	NC	
chr6	109,787,200	ZBTB24	CDS	snv	-	0	0	С	м	NC	М	NC	
chr8	32,463,096	NRG1	CDS	snv	-	0	0	A	W	NC	W	NC	
chr8	98,731,403	MTDH	CDS	snv	-	0	0	G	R	NC	R	NC	
chr11	104,900,433	CASP1	CDS	snv	-	0	0	т	Y	NC	Y	NC	CASP1
chr11	134,118,751	THYN1	CDS	snv	-	0	0	т	Y	NC	Y	NC	
chr12	64,521,471	SRGAP1	CDS	snv	rs115771292	1	0	С	Y	NC	Y	NC	
chr16	31,470,886	ARMC5	CDS	snv	-	0	0	т	NC	W	W	NC	
chr17	7,577,105	TP53	CDS	snv	-	0	0	G	S	NC	S	NC	
chr17	40,257,981	DHX58	CDS	snv	-	0	0	С	м	NC	М	NC	
chr20	33,511,157	ACSS2	CDS	snv	-	0	0	G	R	NC	R	NC	
chr21	43,708,079	ABCG1	CDS	snv	-	0	0	G	S	NC	S	NC	
chr1	12,854,414	PRAMEF1	CDS	snv	rs1063769	0	0	G	ND	ND	R	NC	
chr1	12,907,781	HNRNPCL1	CDS	snv	rs1737105, rs28441396	0	0	т	ND	NC	Y	NC	
chr1	12,907,798	HNRNPCL1	CDS	snv	-	0	0	A	NC	NC	М	NC	
chr1	12,907,802	HNRNPCL1	CDS	snv	-	0	0	С	т	Т	Y	NC	
chr1	12,907,803	HNRNPCL1	CDS	snv	-	0	0	С	NC	NC	Y	NC	
chr1	24,407,877	MYOM3	CDS	snv	-	0	0	С	ND	NC	Y	NC	
chr1	40,960,924	ZNF642	CDS	snv	-	0	0	G	NC	NC	S	NC	
chr1	144,854,581	PDE4DIP	CDS	snv	rs78371650	0	0	т	NC	NC	Y	NC	
chr1	152 076,626	FLG	CDS	snv	rs3126075		0	G	ND	ND ND	s	NC	
MAYO CLINIC													

Exome with RNA-Seq



PRAMEF1

MAYO CLINIC

7

©2012 MFMER | slide-56

How to apply NGS to the clinics

- Identify clinically relevant targets in research samples
- Design workflows to interrogate these targets in large numbers of samples
- Store and manage data from large patient populations

• Analysis tools are key to all of these challenges

Questions

PRESENTATIONS

The sector of th	
Saturday, Mar 2, 1-2:00 pm	Breaking the Data Analysis Bottleneck: Solutions That Work for RNA and Exome Sequencing Presented by Rebecca Laborde, Mayo Clinic - SW1 Speaker @ Booth 522 Sun & Tue 10:30 - 11am
Monday, Mar 4, 11:00-12:30pm	Oyster Transcriptome Analysis by Next Gen Sequencing Presented by Natalia Reyero, NHLBI - RG5
POSTERS	
Sunday, Mar 3, 6:00-7:30 pm Monday, Mar 4, 3:30-5:00 pm	#7 Identifying Mutations in Transcriptionally Active Regions of Genomes Using Next Generation Sequencing Presented by Eric Olson, PerionElmer
	#11 What Does It Take to Identify the Signal from the Noise In Molecular Profiling of Tumors? Presented by Eric Olson, PerkinElmer
award nominee	#119 Elucidating the Effects of the Deepwater Horizon Oil Spill on the Atlantic Oyster Using Global Transcriptome Analysis Presented by Natalia Reyero, NHLBI
DEMONSTRATIONS	
Sun 1pm / Mon 1:30pm	GeneSifter Analysis Edition at Booth 522
Sun 12:15 pm / Mon 3:30pm	GeneStiter LIMS at Booth 522 See a live demo of the easy to use bioinformatic software solutions designed by biologists for biologists and that ware used in the talks and posters listed above.
	PostShow Webinar - March 13, 10-11:00 am PST Molecular Profiling of Tumors Using RNA and Exome Sequencing

