Pathway Analysis In Expression Proteomics

Roman Zubarev

Roman.Zubarev@ki.se

Molecular Biometry, Department for Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm

Proteomics vs Transcriptomics and Metabolomics

Genomics - what the cell may do Transcriptomics - wants to do Proteomics - does Metabolomics - has done

Differences between transcriptomics and proteomics

• The dynamic range - 10^3 - 10^4 vs 10^7 .

19 MAY 2011 | VOL 473 | NATURE | 337

Since the dynamic range of instrumentation is – 10^3 - 10^4 , transcriptomics easily covers all 10,000 expressed genes, while proteomics – ca. 5,000 proteins. But false discovery rate for mRNA 5%, for proteins – 1%

Differences between transcriptomics and proteomics

- The cellular half-life:
 - mRNA 9h
 - proteins 46 h

Differences between transcriptomics and proteomics

The number of protein molecules per mRNA: 1:1 to 1000:1

Combined Predictions - Length and AA Score

Other factors contribute to translation rate!

 mRNA abundances predict ca. 40% of the protein abundance, but log(Ratio) for mRNA predict >60% of log(Ratio) for proteins

mRNA data need to be complemented by Proteomics data

In three different cell lines, practically all expressed genes (and proteins) are shared

Same proteins are expressed in every cell type, but with different abundances

How does protein regulation depend upon protein abundance?

How does protein regulation depend upon protein abundance?

How does protein regulation depend upon protein abundance?

SUMMARY

- Transcriptomics provides large (95%) coverage of expressed genes, but it explains, at best, only 40% of the log(Ratio) of protein abundances.
- Proteomics gives lower coverage (50% or less) by expressed proteins,
 but false discovery rate is only 1%
- For small changes in the proteome (e.g. early stages in time course), deep proteomics is advantageous, as proteins with significant fold-change are those of low-abundance
- For large changes in the proteome (e.g. cell type differentiation), even limited depth proteomics can provide specific fingerprint of cellular state, as protein regulation is largely independent upon abundance

Data Processing in Proteomics

Reductionist Molecular Biology:

"golden bullet"

- detailed interactions, modifications, mechanisms
- lack of total picture

Statistical Approach:

Ad hoc, empirical model

- You get what you see
- Prediction, accuracy
- No explanation

Global model

- prediction based on known pathways
- unknown accuracy
- do pathways exist?...

Pathway Biology:

Protein Identification by Tandem Mass Spectrometry

Protein sequence

ILNKPEDETHLEAQPTDASAQFIRNLQISNE DLSKEPSISREDLISKEQIVIRSSRQPQSQNPK LPLSILKEKHLRNATLGSEETTEHTPSDASTT EGKLMELGHKIMRNLENTVKETIKYLKSLF SHAFEVVKT Enzymatic

digest

Tryptic peptides

EDLISK
EQIVIR
LPLSILK
NLENTVK
LMELGHK
QPQSQNPK
NLQISNEDLSK
SLFSHAFEVVK
NATLGSEETTEHTPSDASTTEGK
ILNKPEDETHLEAQPTDASAQFIR

Tandem Mass Spectrometry (MS/MS)

Molecular mass: 817.44

"Deep" vs "Top" Proteomics

MS-based quantitative discovery approaches

Top Proteomics

- · 'Top proteome': 1500-3000 proteins, 5000-9000 peptides
- No protein separation
- No peptide separation (on-line reverse-phase LC only)
- · Single LC/MS experiment, 0.5-2.0 h long

Quanti 2.4 - February 2011 (2.5 - Feb 2012)

Quanti workflow

Pathway Analysis & Proteomics

Analytical Pathway Biology

Zubarev, R. A.; Nielsen, M. L.; Savitski, M. M.; Kel-Margoulis, O.; Wingender, E.; Kel, A. Identification of dominant signaling pathways from proteomics expression data, J. Proteomics, 2008, 1, 89-96.

Pathway Analysis Workflow

KeyNode-Mediated Analysis: Upstream

Score

KeyNode₁ 3050 KeyNode₂ 2987 KeyNode₃ 2073

••

KeyNode_N 25

Pathway score: ∑(keynode score)

DYNAMIC PROTEOMICS APPROACH

for drug target identification:

- by the speed of change (1 h), 10% selection
- · by the total change in 48 h, 10% selection

Overall: top 3% (35 proteins)

Pathway Analysis of Dynamic Proteomics Data

I) Protein mapping on Pathways

Pathway Analysis of Dynamic Proteomics Data

Upstream Search:

- for Speed, 0-60 min
- · for Magnitude, 0-2800 min

KN Scoring: $\Delta S = (S_A - S_B)*log_2(S_A/S_B)$

Top KN is selected: one for Speed, one for Magnitude

The threshold problem in proteomics

Hacket M. Science, Marketing and Wishful Thinking in Quantitative Proteomics, Proteomics, 8 (2008).

$$G = Abs(A_1-A_2) \times log_2(A_1/A_2)$$
 [ppm]

IF statistical fluctuations of protein abundances follow Poisson distribution, G-threshold is constant

Pathway Analysis of Dynamic Proteomics Data

Downstream KN search

Overlapping
Molecules
= Drug Target Candidates

Identification of TOPI as the drug target from 812 proteins in the input list

Overlap of downstream lists from F_{gamma} , c-FLIP(h): 9 proteins, of which 2 from input list (known dynamics):

TOPI, (speed + magnitude)-rank 228
265 proteasome, (speed+ magnitude)-rank 787

What if TOPI is removed from Input list?..

Overlap of downstream lists from F_{gamma} , c-FLIP(h): 4 proteins, none from the input list:

- TOPI
- · CKII
- Two NR-related proteins

Take-home messages:

- Transciptomics and proteomics overlap, but proteomics is "closer to action", and thus produces more relevant data
- Proteomics is currently limited in "depth" due to the large dynamic range of protein abundances, but technology moves forward fast, and the proteomics depth is increasing
- Correlation analysis provides first insight into the biological process, but pathway analysis is necessary to put the results in biological context
- -Simple mapping of regulated proteins onto pathways ("direct mapping") often is insufficient;
- Upstream keynode analysis is superior over direct mapping
- Combining transcriptomics, proteomics and metabolomics data is the future goal of pathway analysis