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Transcriptional Output of Eucaryotic
Cells

Ribosomal transcripts
tRNA

Messenger RNA (MRNAs for expressed genes),
usually polyadenylated

microRNA

Piwi and Sno RNAs
IncRNA (long non-coding RNAs)



Non-Coding DNA
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Non-Coding Transcripts (NCTs)

Transcripts that do not translate into functional protein
Transcripts do not contain any open reading frames

Transcripts found within intronic regions, intergenic reqions,
and transcribed from coding genes (within exons in antisense
direction or overlapping exons and introns)

Some found to be conserved and contain distinct functions
Transcribed in sense and anti-sense
NCTs include all Housekeeping RNAs and Regulatory RNAs

Housekeeping Requlatory
tRNAs Long Small
snoRNAs XIST RNA piwiRNAs
rRNAs H19 mMiRNAs
NEAT1
NEAT2

HOTAIR



Paradigms for how long ncRNAs
(IncRNAs) function
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New Models for Transcription

Simple operon-based model totally invalid

Average human gene is not just a single
transcript

Multiple isoforms
Sense and anti-sense transcripts

Regulated by transcription, miRNAs,
chromatin remodeling and ??7?7?

How to truly study?



Early attempts to characterize
transcription

e All of the focus was on the mRNAs

* Assumption was that the protein coding genes were
the entire story, hence if you could measure the
amount of transcription of each gene you could infer

how much of the encoded protein was produced in
those cells

 Huge problem with message abundance (some
messages are thousands of time more abundantly
expressed than others). Most highly expressed
transcripts swamp out your sampling when looking for
less abundantly expressed transcripts



History of Transcriptional Profiling

* Make a poly A-primed cDNA library and
Sanger sequence the clones- Expensive and
only good for the most abundant transcripts

* SAGE- serial analysis of gene expression-
sequence just the tags (less sequencing and
can ID many more genes). Victor Velculescu et

al. 1995
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Microarrays

Immobilize probes onto a microarray
Originally done with entire cDNA inserts

Oligonucleotides as probes- for example
Affymetrix

Must know about a specific transcript to make
probes for it

All early arrays were totally focused on protein
coding genes



Computers and the human genome

Progress in the sequencing of genomes came from
advances in computing technology (especially high
density computer chips)

As chips were designed with more “features” computers
became faster

Eventually we had computers that were fast enough to
deal with and handle all 3 billion base pairs of the human
genome sequence

These technologies spawned all genome sequencing
projects

The semiconductor manufacturing platform can be tuned
to biological problems!






1.28 cm

1.28 cm

Actual size of
GeneChip~ array

;
I

Millions of DNA strands built up in each location

500,000 locations on each GeneChip® array
Actual strand = 25 base pairs



RMA fragments with fluorescent tags from sample to be tested

"l

RMA fragment hybridizes with DMA on GeneChip® array



Shining a laser light at GeneChip® array causes tagged DNA fragments that hybridized to glow

Hybridized DNA



History of Affy arrays

* Several hundred genes
* 5,000 gene array

e U133 Plus 2 array- Multiple probes for each
expressed coding transcript

* Probe design- 13 PM (perfect match) probes
(25-mers) and 13 MM (mismatch at the 13t
base) probes. All derived from the 3" UTR of
each transcript
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Number of features on an Affy array

e U133 Plus 2 arrays based upon 500,000
features/array

* Next generation had 6.5 million features/array

e With this many features can do much more
than just probe the 5’ end of genes



3'-Biased Expression Probe Set

Exon Tiling Array

Splice "i.-’aEant M;imring Eﬂ'ﬂj’

Whole Genome Tiling Array




AFFYMETRI,

AN Design of a genome tiling array

The 1oy A Eip ©

Repeat Repeat

Typical design strategy is to select PM, MM probe pairs acroes non-
repetitive regions at a target center-to-center separation which s
referraed to as the resclution of the amray.

Factors conzsidered in probe selection:
* Probe separation
* Probe quality {avoid probes with predicted non-linear intensity
Ve concentration relationzhip)
* Probe uniquenssas (avoid probes with similanty to multiple
gencmic locations.

Typicalhy will end up with more “bad” probes than a conventional 3'-
biazed array design




Tom Gingeras and Tiling Arrays

Tom Gingeras worked at Affymetrix. Got the earliest access to
genome-wide tiling arrays

Started with 5-bp tiling arrays (5 bp from the center of one
oligonucleotide to the center of the next adjacent oligo)

Using these tiling arrays they found that non-polyadenylated
transcripts were the majority of the transcriptional output of
the genome

Could these non-coding RNAs be important regulators of gene
expression?

All this work 1nspired the ENCODE (encyclopedia of DNA
elements) project



Other Microarray Platforms

Agilent- HP color printers
Nimblegen- DLP-based synthesis
lllumina- long oligonucleotides linked to beads

All can synthesize much longer probes. Less
probes/gene. Can wash at much higher
stringencies

Much greater flexibility to design specific
custom arrays



Problems with Microarrays

Lack of sensitivity. Only can measure the
expression of the top 50% of expressed genes

Not really quantitative. More qualitative
Cross hybridization a real problem

Are the Gingeras results correct (i.e. that the
entire genome is transcriptionally active)?

What does the concentration of an mRNA
species tell you about the proteins encoded by
those transcripts?



Next Generation Sequencing

* Based upon massively parallel sequencing

* First commercially available from 454- The
Genome Sequencer (GS series)



Clonal Amplification: Emulsion
PCR

. 1. Anneal DNA template to DNA
% capture beads

Micrareactar
containing clonal
amplification ¥ i
reagents J

2. Emulsify beads, DNA and PCR
reagents in water-in-oil
microreactors. Perform emPCR
{clonal amplification of the
annealed DNA).

3. Break microreactors,
retrieve DMA-bound —

capture beads.




Process Overview - 454
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2) Clonal Amplification 4) Perform Sequencing by synthesis
on 28 y beads 3) Load beads and enzymes on the 454 Instrument

in PicoTiter Plate™



454 Technology - Sequencing Instrument

Sequencing and Basecalling Results for 191base Read
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Strengths and Weaknesses of the 454

Long (400 bp+) reads

Went from 20 Mbs to 500 Mbs output in two
years!

Emulsion PCR
Homopolymers

Limited headroom for further increases in
sequence output



lllumina Genome Analyzer

From: Blow, N. et al. Nature: 2007: 449, 627-630.



Bridge Amplification

1. PREPARE GENOMIC DNA SAMPLE 2. ATTACH DNA TO SURFACE 3. BRIDGE AMPLIFICATION

Rendomly fragment genomic DA Bind single-stranded fragments randomly to Add unlabeled nudectides and enzyme to
and Ggate adapters to both ends of the the inside surface of the flow cell channels. initiste solid-phase bridge amplification.
Fagments.
4. FRAGMENTS BECOME DOUBLE 5. DENATURE THE DOUBLE-STRANDED 6. COMPLETE AMPLIFICATION
STRANDED MOLECULES

The enzyme incorporates nudeotides to Denaturation leaves single-stran ded Several million dense dusters of double-
buld double-stranded bridges on the solid- templates anchored to the substrate. stranded DMNA are generated in sach channel
phase substrate. of the flow cell.



lllumina GA: polymerase-based
sequencing with reversible terminators
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« 8 channels per flow cell

Raw Data is Images

« 300 tiles per channel: First generation
« 20,000 clusters/reads per tile (first

generation)

~_




First Generation Next Generation
RNAseq

GA Il capable of 6 million reads/lane
Barely good up to 30 bps
Do a modified SAGE

Develop TAGs for transcripts and sequence 6
million/lane

SAGE on steroids!!
Not fully exploiting the power of Next Gen



HiSeq 2000




Evolution of Instrument
Performance
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Massively Parallel Sequencing as the
Solution!

Even with the first generation Genome
Analyzer could look at 6 million
sequences/lane. HiSeq 2000 is now up to 300
million reads/lane

Orders of magnitude better than SAGE
Much more sensitive than microarrays

How many reads to characterize a
transcriptome?



Source of the RNA

Fresh frozen versus FFPE

Advantage of FFPE- Many more samples.
Clinical Follow-up

Disadvantage- RNA is quite beat up

Three solutions- (1) DNS protocol, (2) Genomic
Health propriety protocol, or (3) Use fresh or
fresh-frozen



What to Sequence?

* |f you sequence a library made from total RNA
more than 95% of the transcripts will be
ribosomal

* Two solutions: (1) poly A+ selection; (2)
selective removal of ribosomal sequences

(RiboMinus or RiboZero)



Poly A+ Selection

* First strand synthesis done on oligo-dT attached
to magnetic beads

e Strengths- Very effective at removing ribosomal
sequences. Less overall sequencing required.

* Disadvantages- RNA quality an issue. Degraded
RNA makes it difficult to sequence the 5" ends of
transcripts. Only selects for polyadenylated
transcripts (many non-coding transcripts are not
polyadenylated). None of the miRNAs are
polyadenylated



RiboMinus or RiboZero
Ribosomal Removal

* Advantage- Can sequence all (not just
polyadenylated) non-ribosomal transcripts

* Disadvantage- need to sequence more than
poly A+ selection for the same coverage

* RNA degradation decreases the efficiency of
either RiboZero of RiboMinus to remove
ribosomal sequences



Directionality?

* Standard library construction does not

preserve the strandedness of each sequenced
transcript

* |s this important? Depends.

* Protocols are available to generate libraries
that do preserve strandedness



The WT kit from Ambion

This protocol:

a) Starts from ribo-cleared total or polyA.
b)Preserves stranded-ness.

c) Is less biased with respect to positional
flashPAGE™ (~50-150 nt) origin of inserts within transcripts.

ADAPTOR 0.25 hr

HYBRIDIZATION
2 hr

LIGATION

REVERSE 0.5 hr
TRANSCRIPTION
RNase H ’is hr

PCR 1 hr

12-15 cycles

rRNA remova

FRAGMENTATION|

GEL
~ ~ N\ 3 hr Figure from

~50-150 b
inserts P barcode Scott Kuersten



Setting up an RNAseq Experiment

What is the source material?
Tissue culture is probably the best source
Clinical specimens pose a number of problems

What are you trying to determine? Helps to
define how many samples to run and how
much transcriptome sequence to derive from
each sample



RNAseq at its” best

Take your favorite tissue culture cells.

Stress them. Knock down your favorite gene.
Add some chemical.

Measure transcription before and after
Sequence all important transcripts

No need for prior knowledge of the
transcriptional output of your cells of interest



RNAseq and Cancer

Compare gene expression in tumor as compared
to matched normal tissue- essential for RNAseq!

How many samples to run? How many do you
have? How much money do you have?

What are you going to compare? Normal to
tumor? Good outcome to poor outcome?
Different risk factors?

Make sure tumor is >80% tumor! Otherwise think
about using Laser Capture Microdissection



RNAseq and Cancer

How many RNAseq reads are enough?

Bare minimum 75-100 million, but you could

also do 300 million plus (depends upon what

you want to see). How much heterogeneity in
your cancer?

How many tumor-normal pairs to run?

Why do this experiment at all if it will be soon
available from CGAP?



RNA degradation
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What to do with all the data?

Current generation HiSeq 2000 can generate
300 million reads/lane

How to handle this imaging data and convert
it into sequence?

How to aligh sequence to the transcriptome to
figure out what you have?

How to analyze the resulting transcriptome
output and make sense out of it?



Commercial versus In-house Solutions

Many different commercial vendors selling
packages for dealing with Next Gen data-
Geospiza, NextGene, and many others

* Possible in-house pipelines for data analysis
 What to do? Which is best?

 What was your original plan for how you were
going to analyze this data?



So who is doing Next Gen sequencing
and data analysis right?

Broad
Wash U
BGI
Baylor

The key is investing significantly in data
analysis!



So what about me?

Mayo Clinic Bioinformatics Core has been
developing pipelines for different Next Gen

datasets

Active collaboration with Todd Smith/Eric
Olson at Geospiza. Phase Il SBIR grant to
Geospiza

Jian Ma- UIUC as part of the Mayo/UIUC
Partnership



Data Analysis Workflow
Filter /
Alignments/ W
\;ngir:: / Tumor-specific variants

Align to ' Genome / Differentially Expressed

>/ >4 Gene List
Alignments Genes
genome L/ Classify according to

(BWA) gene model (Ref Seq) Gene-Level
Expression Values
(w/variants)

Align to filter
Sequences
(rRNA, tRNA, et

Consensus
Sequence

Exon, Intron,
Intergenic

Differential splicing

Gene-Normalized
Exon Expression Values

Align to splice

junctions Intergenic

List

Visualization of all reads
mapping to a gene in
genome space

~ Splice
¥ Junction /
y AIignmentg/

Gene Map

Secondary Analysis Tertiary Analysis
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Illuminalog, (UHR/HBR)

Comparison with microarrays: UHR/HBR
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* SOLID reports over a wider dynamic range.
* Correlation is good, but what do all the off-
diagonal measurements represent?



Comparison with microarrays: UHR/HBR

[1EY
)8

B Low abundance (<
100 counts)

B High abundance

12 - -4 4 8 12
' (> 100 counts)

SOLiD log, (UHR/HBR)

Affymetrixlog, (UHR/HBR)

Many of the off-diagonal measurements are for
low-abundance transcripts. Is this true dGEx
detected only by SOLID or a technical artifact?



Pairwise Analysis: Human YWhole Transcriptome

Main [lagin: rmayo_projec) = Analysis > Pairwise > Results e
[Reports: Ontology | KEGG | Chromosome | Interactive Plots] [Results: Export | Save]

Group 1 Group 2

Conditions:

Marmal Turmar

Experiments:

50426, 30429, 30431, 80432, B0444, 20449, 50451,
50452, 80455, 80460, 50462

50425, 90428, 30430, 80433, 20442, 20443, 50450,
50454, 80458, 80459, 80461

Significance:

1.5, t-test, Benjamini and Hochberg

Mormalization:

Quality Cutoff:

50

Data Transformation:

Show: | 20 % p Cutoff; |0.05 hd
Mo. Ratio p-value adj. p
1 7785 1.06e-05 0.00200
2 =7404 3.45e-07 0.00080
3 73,72 000220 002848
4 A7.79 0.00025  0.01056
5 A2.15 0.00152  0.02362
& 52096 000641 004945
7 52,16 0.00400  0.03778
8 <5184 8.21e-09 4.58e-05
9 5143 000198  0.02680
10 «s51.10 1.61e-09 1.35e-05
11 4235 0.00011 D.00736
12 #4184 0.00037 0.01209
13 ¥ 4156 1.90e-07 0.00044
14 = 4140 2.40e-05 0.00435
15 = 41,33 1.93e-05 0.00352
16 = 4055 0.00014  0.00539
17 = 3954 1.43e-05 0.00327
18 #3895 0.00030 0.01102
19 #3746 0.00011  0.00769
20 « 3357 1.31e-05 0.00314

Show: | 20 % p Cutoff: |0.05 hd

Log Transformed

adjusted p ¥ | Threshold: |15 ¥ (2144 results found) [1-z20][21 - 40]
Identifier Gene Name
ADH1B Alcohol dehydrogenase 1B (class 1), beta polypeptide
HO®C10 Hormeobox C10
CRISP3 Cysteine-rich secretory protein 2
MYOC Myociling trabecular meshwork inducible glucocorticoid response
MUC? Mucin 7, secreted
C20orfll4 Chromosome 20 open reading frame 114
MUCSR Mucin SB, aligomeric mucusfgel-forming
HOXCS Homeobox C8
PIP Prolactin-induced protein
HO®C11 Homeobox C11
HOXB13 Homeobox B13
HMGCS2 2-hydroxy-2-methylglutaryl-Coenzyme & synthase 2 (mitochondrial)
SERPIMAS Serpin peptidase inhibitor, clade & {alpha-1 antiproteinase, antitrypsing, membe
FEEP4 Phosphatidylethanolamine-binding protein 4
ZIc2 Zic family mermber 2 (odd-paired homolog, Drosophila)
HOXD13 Homeobox D13
HOXBES Homeobox B9
7 Complement component 7
HSPEG Heat shock protein, alpha-crystallin-related, B
HMGAZ High mohbility group AT-hook 2
adjusted p ¥ Threshold: 15 v (2144 results found) [ - 20] [21 - 40]




Transcripts that are UP in tumors: MMP1

log, log, log, log,
RefSeqld Gene (T8 /N8) (T12/N12) (T33/N33) (T51/N51)
NM_002421 MMP1 4.91 7.38 4.59 1.13

102165000 102168000 102167000 1DZ1EBEIEID| 1EIZ1EEIDEIEI| 1DZ1?DEIEID| 1EIZ1?1EIDEI| 1EIZ1?'2EIEIEI| 102173000 102174000 102175000 102176000
8N coverage (+) strand

8N coverage (-) strand

8M coverage (-] strand

8T coverage trand

8T coverag':e+j -) strand

8T coverage (-] strand
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Pairwise Analysis: Human ¥hole Transcriptome

v

Main (login: mayo_project] > Analysis > Pairvize > Results e
[Reports: Ontology | KEGS | Chromosome | Interactive Plots] [Results: Export | Save]

Group 1 Group 2
Conditions: Mormal Turnor
80426, 80429, 80431, 80432, 20444, 80449, 80451, 80425, 80428, 80430, 80433, 80442, 80448, 80450,

Experiments:

20452, 80455, 20460, 20462 90454, 20458, 20450, 20461

Significance:

1.5, t-test, Benjamini and Hochberg

Normalization:

Quality Cutoff:

S0

Data Transformation:

Log Transformed

Group 1: Mormal
Group 2; Tumor

Pathway

Cell cycle

DM& replication

Spliceosome

Pyrimidine metabolism

Mismmatch repair

Proteasome

Homologous recombination

Docyte meiosis

One carbon pool by folate

p53 signaling pathway
Aminoacyl-tRMA biosynthesis
Muclectide excision repair

Base excision repair

RM& degradation

Pancreatic cancer

Srmall cell lung cancer

Purine metabaolism

Lysine degradation

RFM& polymerase

Mon-homologous end-joining

Basal transcription factors

Systemic lupus eryvthematosus
Progesterone-mediated oocyte maturation
Drug metabolism - cytochrome P450
Malaria

Metabolism of xenobiotics by cytochrome P450
Retinol metabaolism

Bladder cancer

Genes KEGG

) i o )

959 5555 ) 55 55 690 59 5 159 8 B 6

Totals

List .

25

Lo Yy 3 O e Y e O Y Oy O Y e Y e Y e Y Y Y Y |

Gene Set

Export Report

Z-5Core
1220 -191
095 -102
216 -192
273 -1.06
2.92 -0.581
521 -1.16
4,70 -0.90
456 -007
442 375
3292 -140
3,79 -1.08
348 -1.12
3.35  0.06
325 -1.20
297 -069
2596 -1.56
293 029
2,80 -0.25
2.66 -091
259 -061
2,58 -1.02
2,96 -0.96
248 -091
-2.38 2490
-2.34 308
-2.34 225
-2.20 247
2.08 -1.10



Pairwise Analysis: Human ¥hole Transcriptome

| > Rasults e

[Reports: Ontology | KEGS | Chromosome | Interactive Plots] [Results: Export | Save]
Group 1 Group 2

Main (login: mayo_project] > Analysis > Pairwise

Conditions:

Mormal Turnor

Experiments:

B0426, 80429, 80431, 80432, 80444, 80440, 80451,
20452, 80455, 20460, 20462

80425, 80428, 804320, 80433, 80442, 80448, 80450,
90454, 20458, 20450, 20461

Significance:

1.5, t-test, Benjamini and Hochberg

Normalization:

Quality Cutoff:

S0

Data Transformation:

Log Transformed

Group 1: Marmal
Group 2 Turmar

Pathway

Froxzimal tubule hicarbonate reclamation
Tyrosine metabolism

Fatty acid metabalism

ABC transporters

Starch and sucrose metabaolism

One carbon pool by folate

Synthesis and degradation of ketone bodies
Glycine, serine and threonine metabolism
Propanoate metabolism

Malaria

Drug mmetabolism - cytochrome P450
Pyruvate metabolism

Circadian rhythm - mamrmal
&ldosterone-regulated sodium reabsorption
Yaline, lewucine and isoleucine degradation
Terpenoid backbone biosynthesis

Glycolysis f Gluconeogenesis

Retinol metabolism

ECM-receptar interaction

Complement and coagulation cascades
Eenin-angiotensin system

Metabolism of xenobiotics by cytochrome P450
Butanoate metabaolism

Fatty acid hiosynthesis

Witamin BG metabolism

Cardiac muscle contraction

) ) ) ) ) o ) )

Genesz KEGG

[y

= I
L I I R R T O Y TR R o S e RV R Y R

Totals
Li5t e

Ol o B el RS B et Y e Y R e N A OOl Yl e R e

L0 I e Y o g e O O o O S o o o o R Rl

Gene Set

23
41
42
44
52
17

Export Repart

Z-5Core
-0.15  6.83
-1.03  5.60
-0.535 4.57
-1.66 441
-1.89 3.87

442 375
015 356
052 345
049 3.29
-2.34  3.08
-2.28  2.90
o.os  2.80
-0.24 2.78
102 2.68
-0.63 257
o492  2.50
-0.06 Z2.47
-2.20 247
-0.40 246
-145  2.32
-0.532 2.26
-2.34 2,25
-0.78  2.10
059 2.08
059 2.08
-1.30  Z.04



Pairwise Analysis: Human Whole Transcriptome

Main (login: mayo_project) = Analysis > Pairwise > Results e
[Reports: Ontology | KEGG | Chromosome | Interactive Plots] [Results: Export | Save]

Group 1 Group 2
Conditions: MNormal Tumor
Experiments: 20432 20433
Significance: [ algl=]
Splice Index: Maw
Normalization:
Quality Cutoff: 500
Data Transformation: Mone
Show: |20 ¥ Threshold: | Mone (7324 results found) [1-20][21 - 40]

No. Ratio  Splice Index  Identifier Gene Name

1 1.23 0.09411 ASPH Aspartate beta-hydrosylase

2 2.29 0.09992 TFM3 Tropomyosin 3

3 2.60 0.10623 TP 4 Microtubule-associated protein 4

4 3405 0.10727 TFM1 Tropomyosin 1 (alpha)

5 5.58 0.11305 ORSLL Obscurin-like 1

& 1.93 0.11569 AARSDL Alanyl-tRME synthetase domain containing 1

Foa121 0.11776 100132299 100132299

=] 78,17 0.12083 PDE4DIP Phosphodiesterase 40 interacting protein

3 11,47 0.12152 THMOD 1 Tropomodulin 1

1 1.14 0.12225 C21orfal Chromosome 21 open reading frame 91

11 1.72 0.122235 POLIMS FODZ and LIM domain 5

12 =« 1.10 0.12381 LOC197350  Hypothetical protein LOC197350

13 = 1,11 0.12465 RFEM1G REMNA hinding motif protein 16

14 = 382 0.12554 ABCAZ ATP-binding cassette, sub-family & (ABC1), member 2

15 « 192 0.12647 PALLD Palladin, cvtoskeletal associated protein

1& 1.11 0.12746 FG53 Fequlator of G-protein signaling 2

17 «1.07 0.12851 SLCETAL Solute carrier family 37 (glycerol-3-phosphate transporkter), member 1

18 -« 1.08 0.129a63 BMPE Bone morphogenetic protein 6

19 « 1,14 0.12963 CACMNEZ Calcium channel, voltage-dependent, beta 2 subunit

20 g.18 0.13082 I5LR Immunoglobulin superfamily containing leucine-rich repeat

Show: |20 + Threshald: | Mone (7324 results found) [1-20][21 - 40]




Main (login: maye_project) > Analysis > Pairwisa > Results > Gana Suramary e

»» Gene Summary: Aspartate beta-hydroxylase

* By Group

Group Condition N Mean SEM  SEM/Mean Quality Mean 60
1 Mormal 1 534728 - - 2714.000
2 Turar 1 434700 - - 2190.000
c 40
£
« By Target é
Group Sample Expression Quality w o0
1 14 MYP 33.4728 2714
2 13TYP 43.4700 2190

Harrnal Turnor
s Exon Usage

ENEEEESEEEEEESEEEEEEE 88 AE Em
Wiew Density Plots

Wiew Exon Data

Tumor down-regulated 1.23 fold

Zoom in[ 1.5x H 3x ” 10x H hase ]zoom out[ 1.5x H ax ” 10 H Chrom.

Unique Only C1Hide Vanants

» One-Click Gene Summary™ 1110\'6

Sample 1

300

100 1

0 ool | —l ; 1 )

62,716,348 62,733,947 62,751,546 62,769,145

Sample 2

150

100 1

0 :
62,733,947 62,751,546 62,769,145



» Gene Summary: Tropomyosin 3

« By Group

Group Condition N
1 Mormal 1
2 Turnor 1

® By Target
Group Sample
1 14 N Y¥P
2 12TYP

s Exon Usage

Main (lagin: maye_project] * Analysis > Pairwise > Results > Gane Summary e

Mean SEM  SEM/fMean Quality Mean

View Density Plots
Wiew Exon Data

» One-Click Gene Summ

1500

1277.240 - - 64826.000
154.070 - - T762.000
E: 1000

Expression Quality j 500

1277.240 64826

154.070 7762

o Mormal Tumor
Tumor down-regulated 8.29 fold
1110\'6 ZOo1 in[ 5> H Ix H 10x H hase ]zoom outl 1.5x ] I [ 10 ” Chrom.
Unuque Only CJHide Vartants
Sample 1

6000
4000 1
2000 1

o BT . 1 Sm—
152,394,404 152,403,611 152,412,818 152,422,025 152,431,232

Sample 2
1000
500

0 — T ——— T l ——r

152,394,404 152,403,611 152,412,818 152,422,025 152,431,232



® By Group
Group Condition N Mean SEM  SEM/Mean
1 Mormal 1 619.706 - -
2 Tumor 1 238.033 - -
s By Target
Group Sample Expression
1 14 MNYP 519,706
2 13 TYP 238.033

® Exon Usage

ENENEEEEESE EEEEETEEEE
iew Density Plots
View Exon Data

»» One-Click Gene Summary™

Quality Mean
31453.000
11992.000

Quality
31453
11992

Sample 1

600

Main {login: mayo_project) = Analysis > Pairwise » Results > Gene Summary e
» Gene Summary: Microtubule-associated protein 4

a0d

600

400

Expression

200

Harrnal Turnor

Tumor down-regulated 2.60 fold
compared to Normal

Zoom in[ 1.5% ]

[ 10x H hase ]zoom out[ 1.5x ]

[ 10 H Chrom.

Unique Only (THide Variants

0
47,918,921

Sample 2

300

47,925,546

47,932,171

| |

47,938,796

47,945,421

.

i

0
47,918,921

47,925,546

47,932,171

47,938,796

47,045,421



Antisense transcripts: AL157440 & C10o0rf116

BET Eiﬁﬂﬂ| BE?1TDDD| 33}'1?50D| BE71 ECIIJD| 88718500 33?190EIEI| 8871 QEGD| 88720000 BB?EHEGM BB?E1DDU|
33N coverage (+) strand ‘ |
33N coverage (-) strand

A ) A . A ke - M. -
33T coverage (+) strand

33T coverage (-) strand

. [ § ‘- Fr | - - = .‘ = - L& ‘L — l .l A all P b, '
AL157440 :
C100rf116 Ml : - - —




Antisense transcripts: C8orf55 & SLURP1

15000 1438100 Clﬂ| 14381 EGDU| 14382 D000|
8N coverage (+) strand

8N coverage (-) strand N M ‘ l

8T coverage (+) strand
M il

8T coverage (-) strand

csorfss Wl J— SLURPT *——l—l




Long Non-coding Transcripts

2 databases of ncRNA were evaluated: one had
2,500 and the other had 400,000 ncRNAs

Use the ncRNA sequences as a reference to
map the fastq sequence reads

Obtain read counts as a measure of expression
of each ncRNA

2-19% of total reads maps to these ncRNAs
Normalize the count per sample reads

Differential expression analysis for tumor versus
normal



PC#211.6%

PCA Mapping (54.3%)

Type

= Tumor
129 = Normal
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9.54

76.1
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il ﬁfz.ﬁ
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=124 il
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What other information is available
from RNAseq?

* RNAseq is actually sequencing the transcripts

* For more abundantly expressed genes can
determine if there are mutations in your
transcribed sequences

* Allele-specific expression changes can also be
detected



Coverage of exons

5K-25K exons may have
sufficient coverage for
mutation detection/
allele-specific gene
expression analysis.

20
Coverage

200,000
175,000
150,000
125,000
100,000
75,000
50,000
25,000
0

Exon count (cumalative)



Searching for Cancer-Specific
Mutations

 Examine the more abundantly expressed
genes and compare sequence in tumor to
matched normal tissue

* Gene must be expressed well in both tumor
and normal

e Can still do this for the top 10% of expressed
genes (more if you sequence deeper!)



Allele-Specific Expression

An important mechanism in cancer
development (deletions) is detected as loss of
heterozygosity of polymorphic markers

This can result in loss of expression of just one
allele

Can this have an effect beyond just a 50%
reduction in expression?

Yes- Allele-specific expression



Allelic
Ratios

200,000 C
175,000
Patient 8 Normal ) .
] 150.000 -=-Patient 8 Tumor Countin Countin
-g ’ Patient 33 Normal GO Category Description Category Overlap P-value
S wn -o—-Patient 33 Tumor
Z 5 125000 Patient 51 Normal cell adhesion 189 9 3.5E-03
> X Do
b= .."'c'_; 100,000 Patient 31 Tumor organ development 294 12 1.4E-03
E 75,000 epidermis development 55 7 9.9E-05
: ’
O
50,000 ectoderm development 60 8 1.6E-05
intermediate filament cytoskeleton 25 8 1.7E-08
25,000
plasma membrane 578 16 1.4E-03
0
0 5 10 15 20 25 30
Average Coverage of Exons q a,
@ O
q@{\ Q\Q/
& a°
Allelic Gene Expression & &\0
Imbalance? Tumor vs Normal Allelic Imbalance Details C;b v
8 33 51 8 33 51 8 33 51
cCb44 ® @ @O | 09| 05 1.3 Syn, | K->R I/INSS @ Cd44 molecule
DSC3 ® @ @ | o5 0.5 1.1 3 3, K->R, S->T 3(3) @ desmocollin 3 isoform Dsc3a preproprotein
DST® @ @ | 13| o1 0.0 L->F Syn, I/NSS G->R @ dystonin isoform 1e precursor
MALAT1 @ @ @ 0.3 -0.6 0.3 NC NC NC metastasis associated lung adenocarcinoma 1
PERP @ @ @ | 07 0.0 1.7 3(2) Syn, R->P 3 @ PERP, TP53 apoptosis effector
ALDH3A1 @ @ 0.9 14 |24 3, Syn D->G aldehyde dehydrogenase 3A1
CCND1 @ @ 37 | 01 | 12 3(2) 3 ® cyclin D1
CTNND1 @ @ 12 | 00 | 10 l,3 l,3 @ catenin, delta 1 isoform 1A
DsP ® @ 01| -03 | 16 I->F, Syn Syn @ desmoplakin isoform |
FAT2 ¢ @ o 0.3 1.9 Syn S->L, I, I->M, @ FAT tumor suppressor homolog 2
GJB2 e o 0.6 -0.7 1.2 W->C I, 3 @ gap junction protein, beta 2




RNAseq is complementary to other
technologies

 Compare expression to methylation (which
can either be done on arrays or with some
form of methylation sequencing)

e Compare the exome sequence searching for
mutations in genes to gene expression

* Attempt to integrate all of these into a
cohesive model (for example of cancer
development)



RNAseq is also becoming affordable!

Current generation HiSeq 2000 can generate
300 million reads per lane of a flow cell.

If 75 million reads is sufficient can bar code
and run 4 samples/lane. Cost per sample (with
library prep) is then $500 per sample

If you need 150 million reads the cost per
sample is S900 per sample

As sequence output further increases the cost
of RNAseq will further decrease



RNAseq as part of clinical practice

Several institutions and companies are already
exploring using RNAseq on cancer specimens to better
inform clinical decisions (University of Michigan,
Genomic Health)

Can determine important changes in transcription with
much greater granularity than microarrays.

Can also determine non-human transcripts (such as
viral transcripts)

Information is very complementary to exome
seguencing

Will this become a standard part of cancer care very
soon?



CONCLUSIONS

RNAseq is a powerful tool to analyze the transcriptional
output of cells

Think carefully to design the proper RNAseq
experiment before you waste your money and time

Decide on the number of samples, which samples,
what type of RNAseq library and how many
sequences/sample

Can determine message abundance, transcript
isoforms produced, allele-specific expression and even
mutations in more abundantly expressed transcripts

Will quickly be replacing microarrays for measuring
transcription



