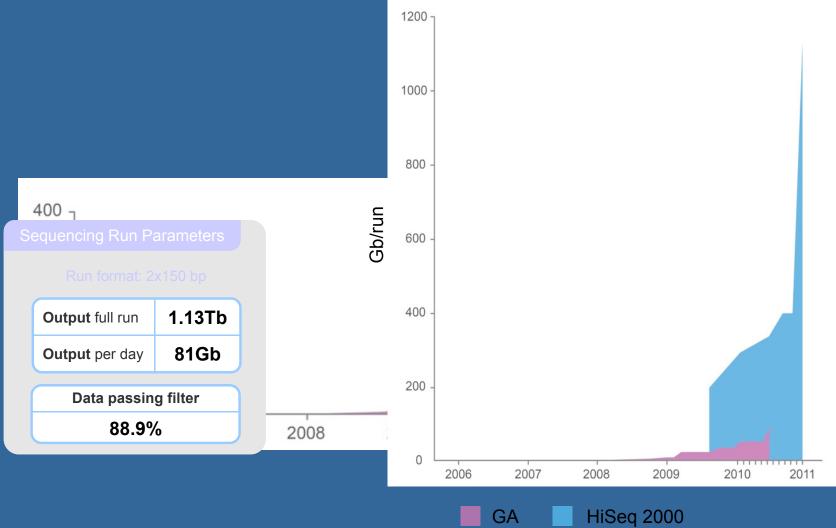
Integration of multiple datasets in head and neck cancer

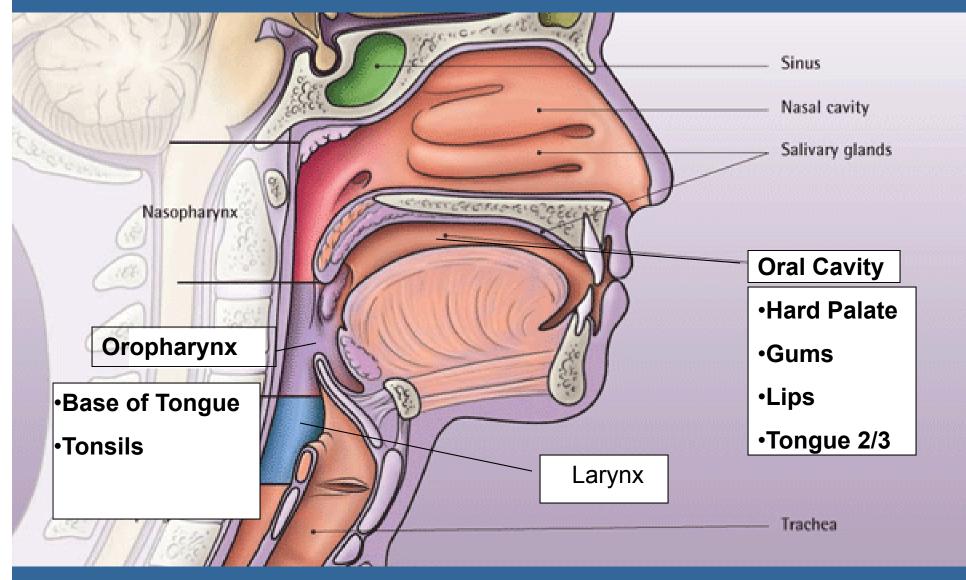

Analysis of transcriptome and exome sequencing with methylation array data

David I Smith, Ph.D. Professor Chairman of the Technology Assessment Group Center for Individualized Medicine Mayo Clinic

HiSeq 2000

Evolution of Instrument Performance

Uses of Next Generation Sequencing


Whole genome sequencing- requires 100+ gigabases of total sequencing (probably more for cancer genomes)

Whole exome sequencing- requires enrichment of the exome and then deep sequencing of the resulting 50 Mbs

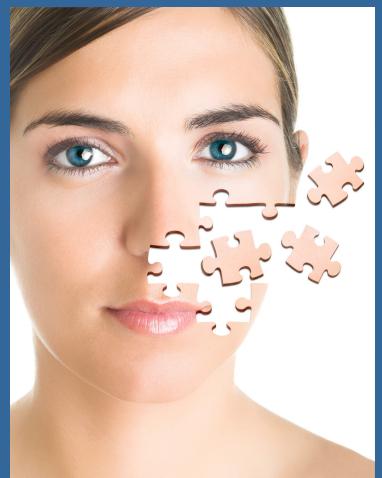
Transcriptome sequencing- what is actively being transcribed in the cells of interest

Methlyation sequencing- characterizing the epigenome, or utilize the Illumina 450K methylation arrays

Head and Neck Cancer

Head and Neck cancer

- 6th most common cancer
- Epithelial Cancers (Carcinomas)
 - Squamous Cell Carcinoma
 - Adenocarcinoma
 - Thyroid
- Mesenchymal
 (Sarcomas)



Risk Factors

- Smoking and drinking
 - 6-7th decade of life, prolonged exposure
 - All sites
- HPV (16,18)
 - Oropharyngeal SCC (30-90% of patients)
 - Younger patients (<50 years)
 - Lack traditional risk factors
 - Chemo/Radiation Sensitive
 - Lacking strong evidence of consistent viral integration

Head and Neck Function

- Speech/Communication
- Swallowing
- Smell
- Taste
- Vision
- Cosmesis
- Hearing

Treatment

- Overall mortality ~ 60%
 - Depends on Patient, Tumor, and Treatment
- Treatment modalities
 - Surgery: Primary vs Salvage
 - Non operative therapy
 - Radiation: Primary vs adjunct vs salvage
 - Chemotherapy: adjunctive
 - Neoadjuvant (induction), adjuvant (concomitant)

Treatment modality

Surgery: \$30,000-50,000
Radiation: \$100,000-300,000

Outcomes roughly equivalent

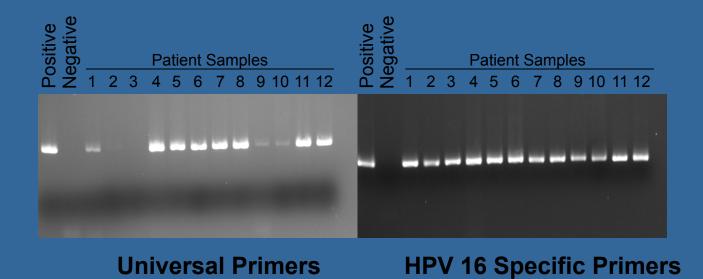
Chemotherapy: \$100,000-500,000

4% survival benefit in select patients
4% of patients die from treatment

 Financial incentive to treat with Radiation/Chemo?

HPV not just in the cervix/cervical cancer

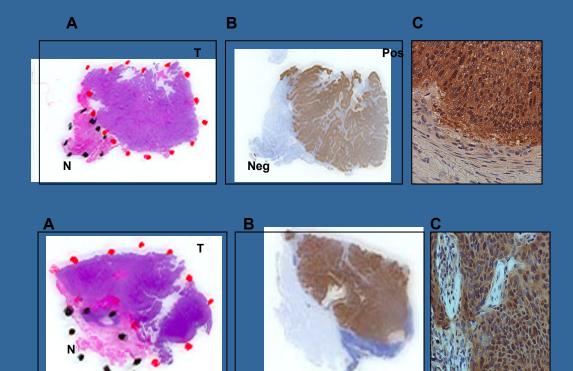
In cervical cancer HPV long-term infection coupled with eventual integration appears to be the trigger causing cervical cancer HPV also found in some head and neck cancers, anal cancer, vulva and vaginal cancer, and cancer of the penis Role of HPV in these other sites is less well understood, however


HPV oncogenes

- E6 and E7 genes are consistently expressed in HPV infected cells
- HPV E6 decreases p53 expression
- HPV E7 gene leads to loss of pRB cell cycle arrest
- pRb negatively feeds back on p16
- When pRb is down regulated by HPV E7, p16 is over expressed

Detecting HPV in head and neck cancer

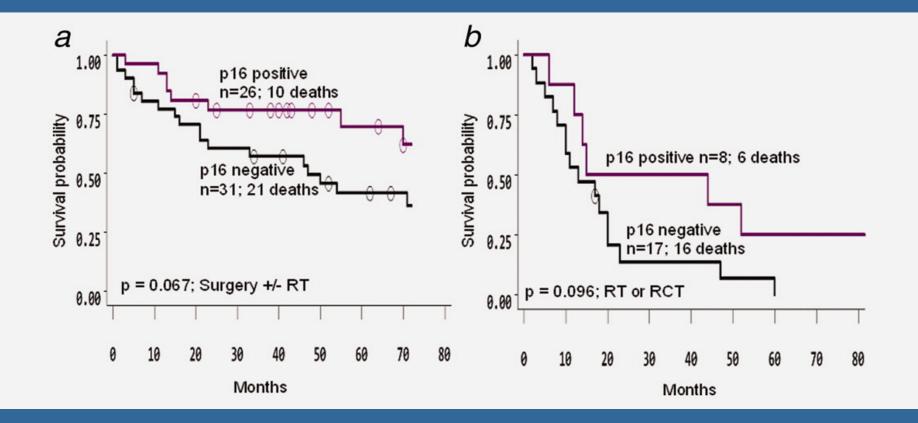
- In situ hybridization for HPV sequences
- PCR for HPV DNA
- Immunohistochemistry for p16 expression (which is elevated in HPV+ cancers)
- Detection of transcriptionally active infections by measuring RNA transcripts, or protein for the oncoproteins E6 and E7


HPV Detection by PCR

 More Consistent results from Fresh Frozen Tissues versus Paraffin Embedded Samples

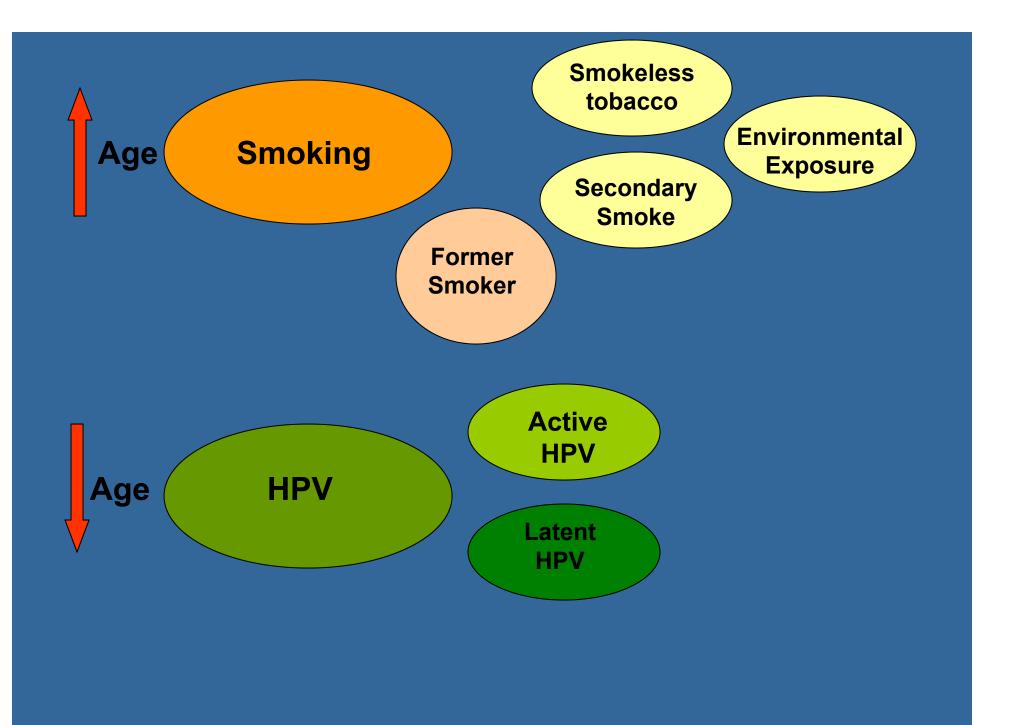
HPV Detection by IHC

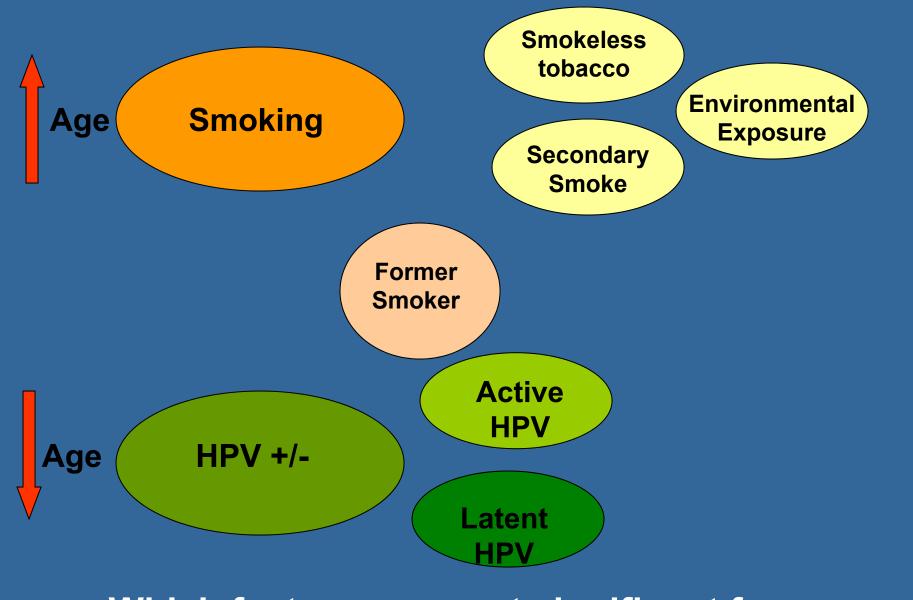
A: H&E Stain B: IHC p16^{INK4A} C: IHC p16INK4A (40X)


HPV E6 and E7 Expression by Q-RT PCR

- Not routinely done
- Difficulty in doing this out of paraffin
- New technologies to do this- Nanostring, Fluidigm, or Advanced Cell Diagnostics (RNAscope)

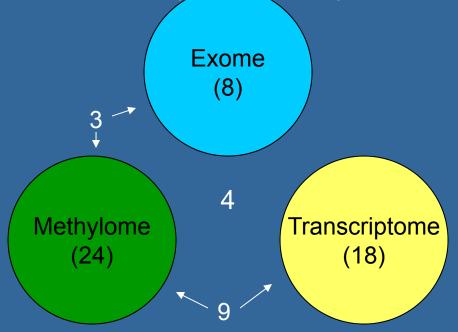
HPV Infection Rates


- High rates of HPV positivity in BTT (oropharyngeal) tumors (26-91%), Is this because HPV rates differ in different populations or is this a technical problem?
- Low rates of HPV positivity in Oral Cavity tumors (3-11%)


Oropharyngeal HPV+
 – HPV16,18 most common, other sub-types?

Two distinct entities of oropharyngeal cancer?

- HPV minus generally older smokers and drinkers. Much worse clinical outcome due to more DNA damage
- HPV positive- contains those individuals who are both younger and many are nondrinkers/non-smokers. Less DNA damage, hence possibly more treatable?
- Not clean groupings as there are smokers/drinkers that are also HPV positive


Which factors are most significant for the development of disease?

Application of Massively Parallel DNA sequencing and related technologies

mRNA-Seq / nCounter (or other) validation

Exome sequencing

Methylation arrays

Application of Massively Parallel DNA sequencing and related technologies

mRNA-Seq / nCounter validation

Exome sequencing

Methylation arrays

Clinical Application -Tool Development

Patient knowledge of technologies expectations Discovery -Experimental

Clinical Applications

- Supplement current technologies for diagnosis (detection of HPV)
- <u>Develop markers for patient stratification</u> <u>based on most significant risk factors</u>
- Develop tools for early detection of primary disease and recurrence

Experimental Interests

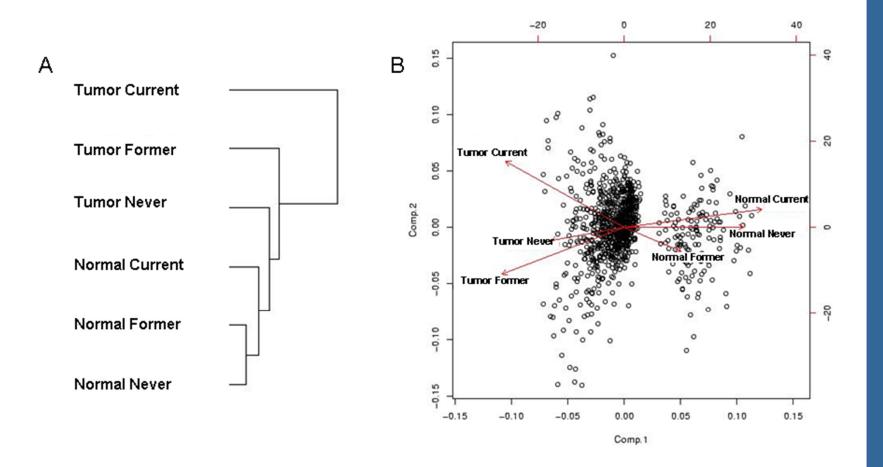
- Transcript dysregulation

 Risk factors, sites, disease behavior
- Non-coding transcripts
- Fusion transcripts
- Methylation and mutations define mechanisms of genome dysregulation

mRNA-Seq Transcriptional profiling of Oropharyngeal SCC

- 18 Tumor and Patient Matched Normal Tissue Samples
- Illumina GAIIx (12 samples) (oligo dTprimed) and SOLiD (6 samples) (Ribominus removal of rRNA species)
- ~65 million reads per sample (200 million for SOLiD RNAseq)
- Data analysis
 - Genesifter, Geospiza, Seattle WA

RNAseq on T/N Pairs

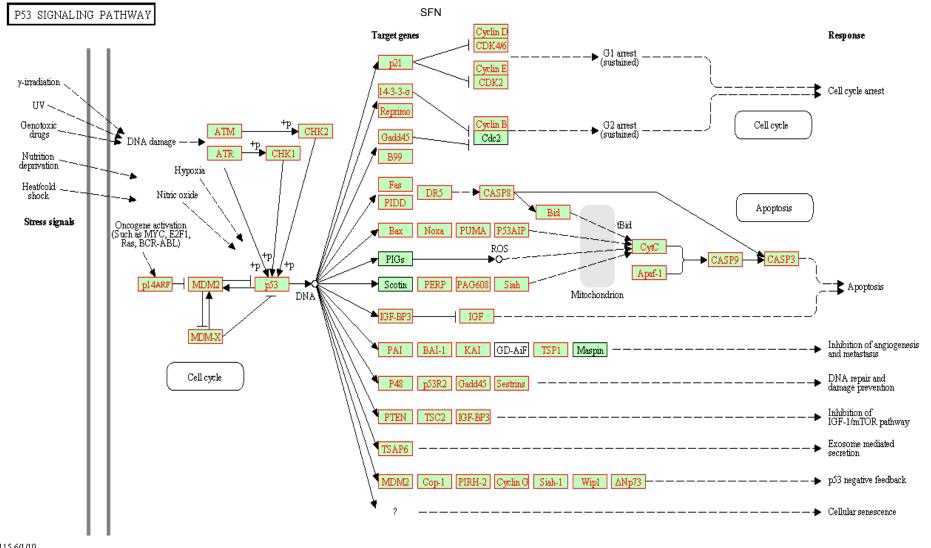

• Illumina GA IIx or SOLiD 4

	Age	Gender	Illumina/SOLiD
	56	М	Illumina
Current Smoking	73	Μ	Illumina
	54	Μ	Illumina
	65	F	Illumina
	48	М	SOLiD
Former Smoking	48	М	Illumina
	38	Μ	Illumina
	64	F	Illumina
	66	Μ	Illumina
	60	F	Illumina
	69	М	SOLiD
	62	Μ	SOLiD
Never Smoking	46	М	Illumina
	49	F	Illumina
	73	Μ	Illumina
	48	Μ	SOLiD
	55	Μ	SOLiD
	54	F	SOLiD

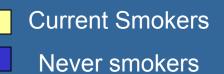
Develop markers for patient stratification based on most significant risk factors

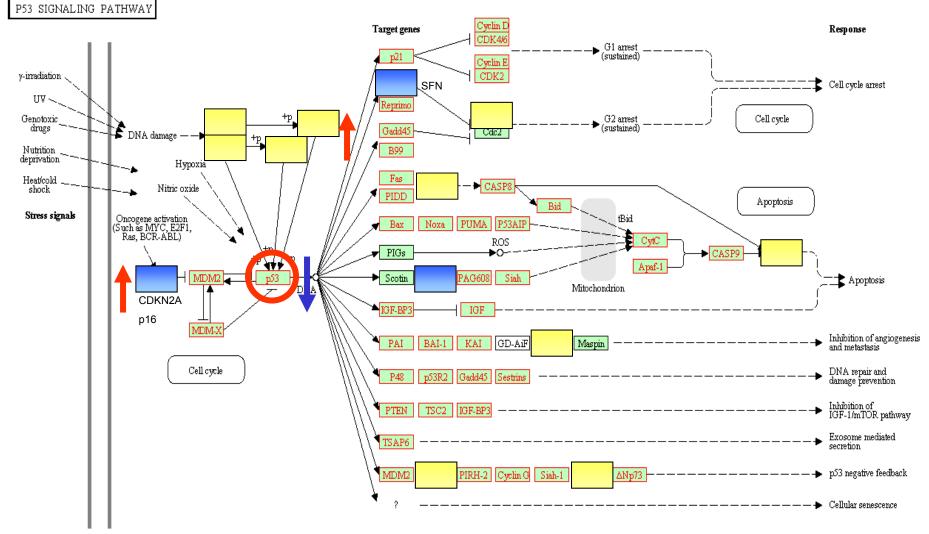
- Patients present with overlapping risk factors
- Patient self-reporting of tobacco exposure is often unreliable
- Lack of mechanism for role of HPV

Global Gene Expression mRNA-Seq patients grouped by smoking status

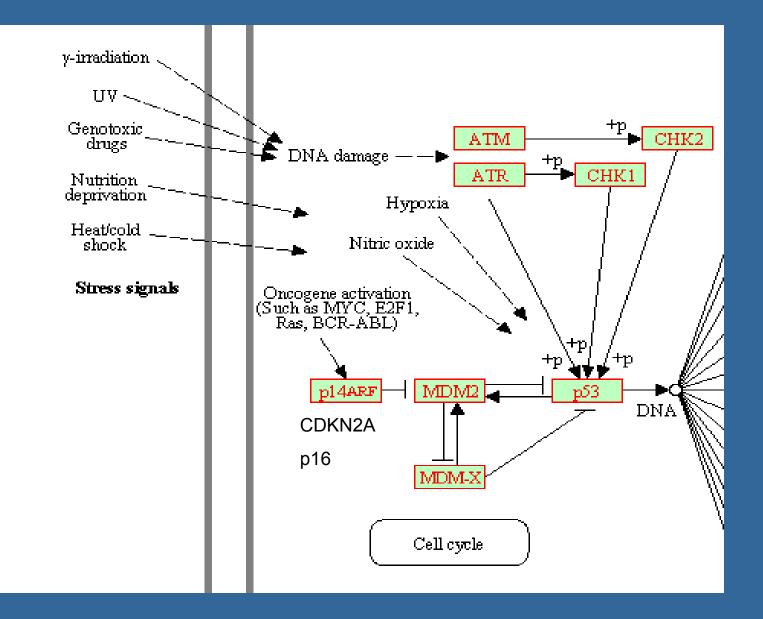


Analysis of transcriptional profiling

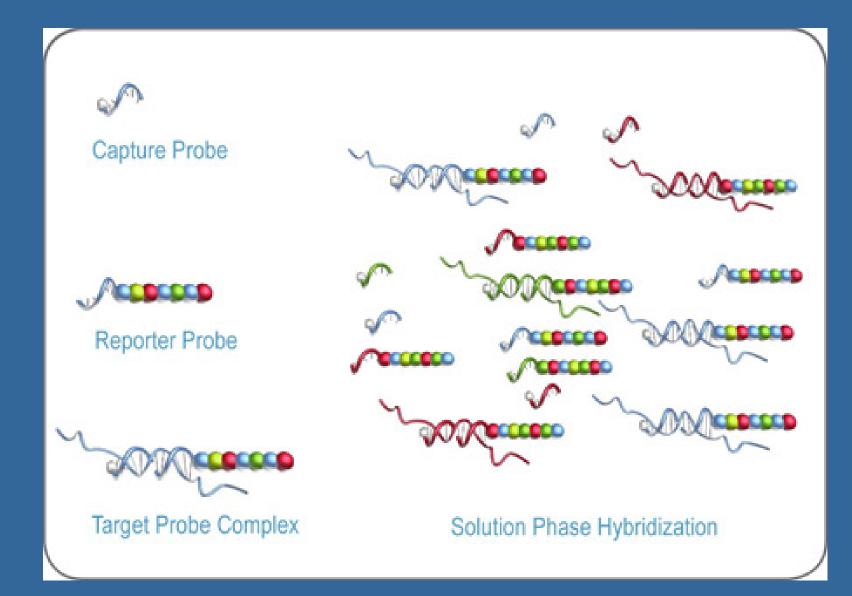

- Differentially regulated genes

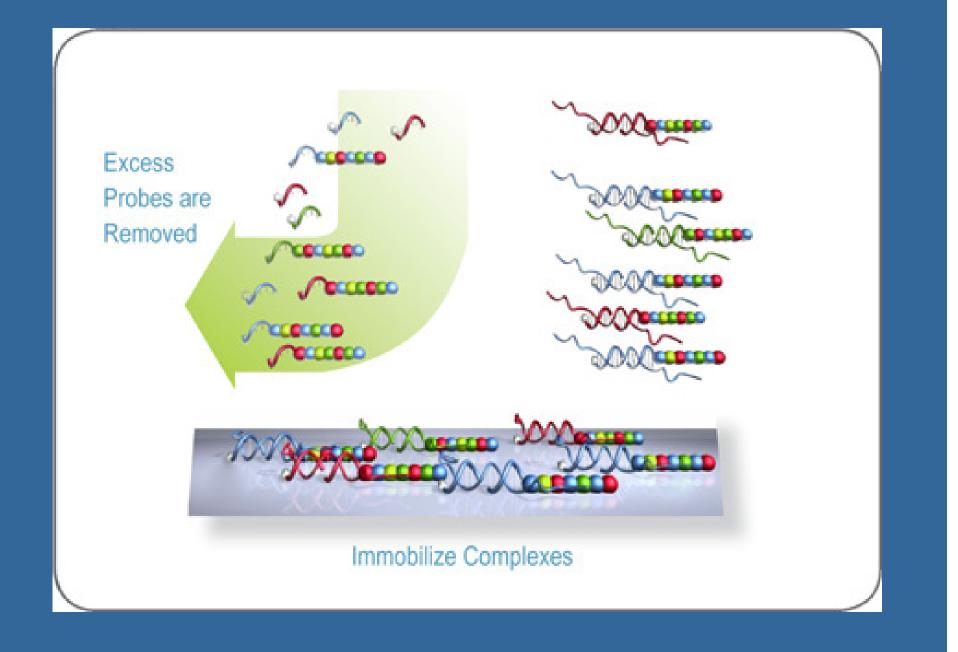

 HOX, MMPs, T cell signaling, Immune responsive gene targets
- Pathway analysis (Genesifter)
 - p53 signaling pathway
 - Is there a difference between groups divided by risk factor
 - **Regulatory Non-coding Transcripts**

Transcriptome Analysis : Differential T/N


04115 6/1/10 (c) Kanehisa Laboratories

04115 6/1/10 (c) Kanehisa Laboratories


p53 Signaling

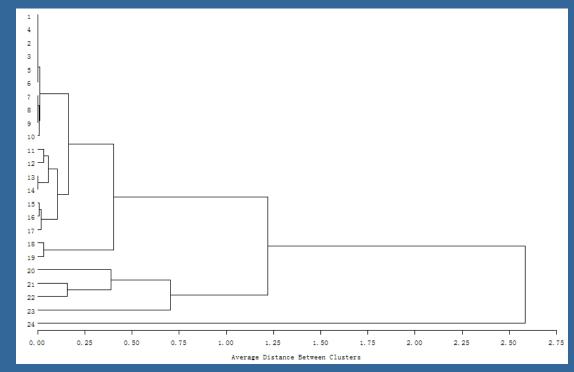


Validation Experiments

- Small sample size restricts analysis
- Validate in larger number of tumor/normal pairs
- Nanostring nCounter digital counter
 - 96 gene codesets
 - -44 sample pairs
 - 100ng input RNA
 - Compare fresh frozen to FFPE

nCounter Codesets

COLLEGO


Color Code	Counts	Identity
	3	XLSA
	2	FOX5
(0)((0)	1	INSULIN

nCounter HPV gene target analysis

- Evaluate expression patterns of genes with implicated correlation to HPV infection in head and neck cancer
- Group patients based on HPV16- E7 transcriptional levels

Average linkage cluster analysis HPV16- E7 by qPCR

HPV status grouping	Patient	HPV16 E6	HPV16 E7	Subsite	Age	Smoking Status	T stage	N Stage	M Stage	Grade
	1	2.21E-06	2.05E-06	Tonsil	73	Never	2	2b	0	3
	4	2.56E-05	3.17E-05	BOT	59	Former	3	2b	0	3
	2	0.000136	0.00102	Tonsil	60	Never	1	2b	0	3
	3	0.000162	0.001197	Tonsil	65	Former	1	1	0	3
ble wetting (1 struct	5	0.00062	0.001232	Tonsil	46	Current	1	2b	0	NR
Negative / Latent	6	0.001333	0.002012	Tonsil	45	Never	4a	2b	1	3
	7	0.004072	0.005839	Tonsil	47	Former	4a	2c	0	4
	8	0.004714	0.00821	Tonsil	73	Former	3	2b	0	3
	9	0.004824	0.032355	BOT	62	Former	2	2b	0	3
	10	0.008126	0.019382	Tonsil	61	Never	1	2b	0	3
	11	0.041836	0.040049	Tonsil	56	Former	2	2b	0	3
	12	0.059295	0.102554	BOT	78	Never	3	2b	0	4
	13	0.079654	0.123738	BOT	75	Former	2	2b	0	3
	14	0.080307	0.153541	BOT	62	Never	1	2a	0	3
Low	15	0.116239	0.211119	Tonsil	63	Former	3	2b	0	4
	16	0.12027	0.267703	Tonsil	48	Never	1	0	0	3
	17	0.127278	0.17129	Tonsil	49	Current	3	2b	0	3
	18	0.247945	0.263652	BOT	39	Never	2	2a	0	3
	19	0.26658	0.335911	Tonsil	63	Never	2	2b	0	3
	20	0.475037	0.470172	BOT	67	Current	2	2b	0	3
	21	0.644739	0.547167	BOT	55	NR	1	2a	0	3
High	22	0.731662	1.472993	BOT	57	Never	2	0	0	3
-	23	1.593043	1.774166	BOT	62	Former	2	2c	0	3
	24	0.995721	2.126597	BOT	57	Current	2	2c	0	4

Negative / Latent E7

Low E7

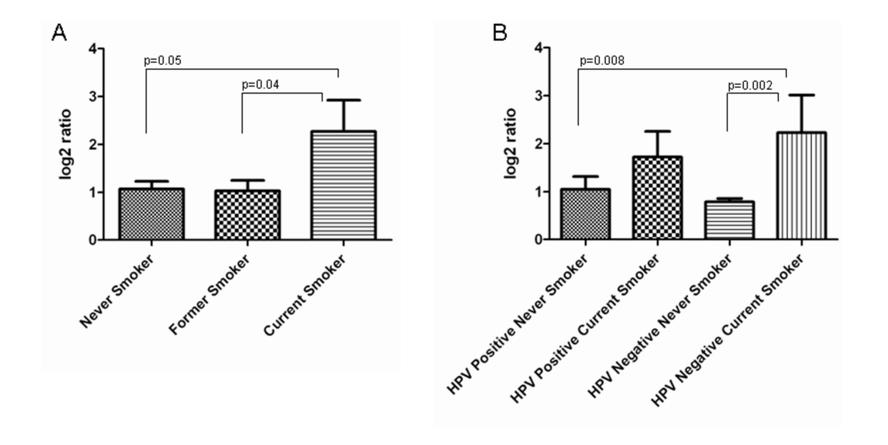
High E7

Large Genes	5
ANK2	
BAI3	
DLG2	
PTPRG	
ERBB4	
FGF14	
RGS6	
CTNND2	
RYR3	
A2BP1	
CA10	
ELMO1	
HDAC9	
HS6ST3	
KCNMA1	
MYT1L	
NRXN1	
CTNNA2	
DCC	
GRIK2	
HPSE2	
NEBL	
NLGN1	
PDE4D	
PRKG1	

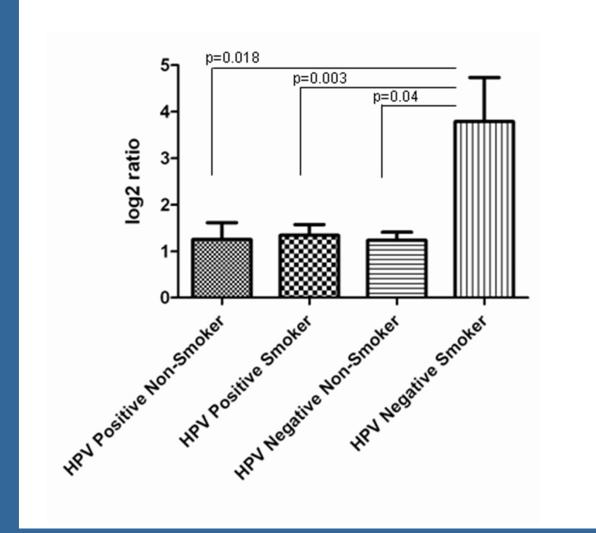
NonCoding T	ranscripts
CDKN2BAS	
HOTAIR	
UCA1	
GAS5	
HULC	
KCNQ10T1	
PCGEM1	
DLEU2	
LSINCT2	
LSINCT3	
LSINCT5	
LSINCT10	
LSINCT11	
HOX Genes	
HOXD13	
HOXD11	
HOXC13	
HOXA9	
	-

p53

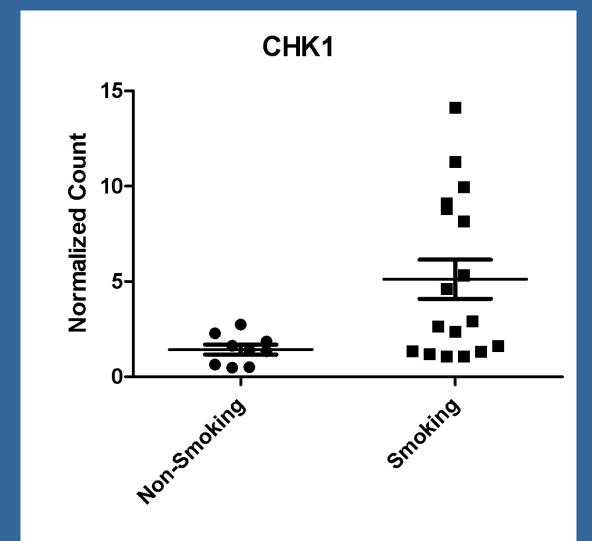
CHK2 CHK1 TP53 MDM2 CDKN2A ATR MYC E2F1 NRAS AKT1

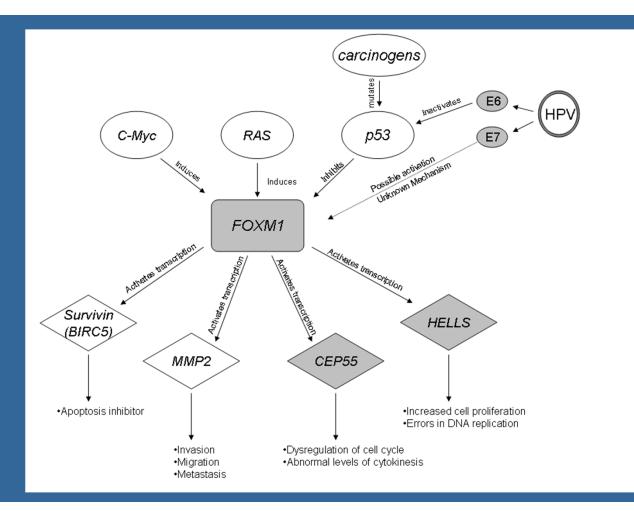

ECM VTN SPP1 IBSP THBS ITGA2B ITGA2B ITGB5 ITGB8 ITGB4 TNR

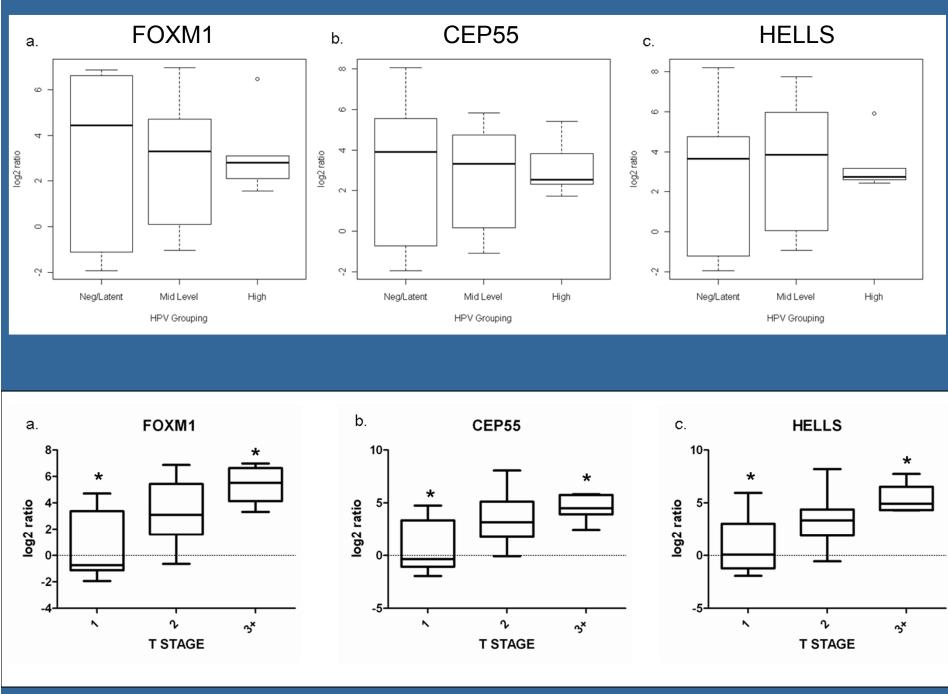
MMP	
MMP11	
MMP3	
MMP14	
MMP1	
MMP13	
MMP12	
Other	
RFWD2	
PPM1D	
THBS1	
CYCS	
PERP	
SRC	
PRKCG	
PTK2	
PIK3CA	
ITGB6	
EGFR	
CDH1	
CTNNBIP	1
CD4	
CD8A	
CD3D	
RB1	
	pillomavirus type 16
	pillomavirus type 16
	pillomavirus type 16
	pillomavirus - 18
	-
CMV (HH) EBV (HH)	v-3) /_4)
EBV (HHV	/-4)
	• • /


Results

- Did not work out of paraffin at all
- Appears to work for more abundantly expressed transcripts, not too good for low abundance
- Worked great for HPV E6 and E7


ATR ataxia telangiectasia and Rad3 related




Variation in expression of Current Smoking groups

Linking Expression of *FOXM1*, *CEP55* and *HELLS* to Tumorigenesis in Oropharyngeal Squamous Cell Carcinoma

Jeffrey R. Janus, MD; Rebecca R. Laborde, PhD; Alexandra J. Greenberg; Vivian W. Wang, PhD; Wei Wei, PhD; Anna Trier; Steven Olsen, MD; Eric J. Moore, MD; Kerry D. Olsen, MD; David I. Smith, PhD

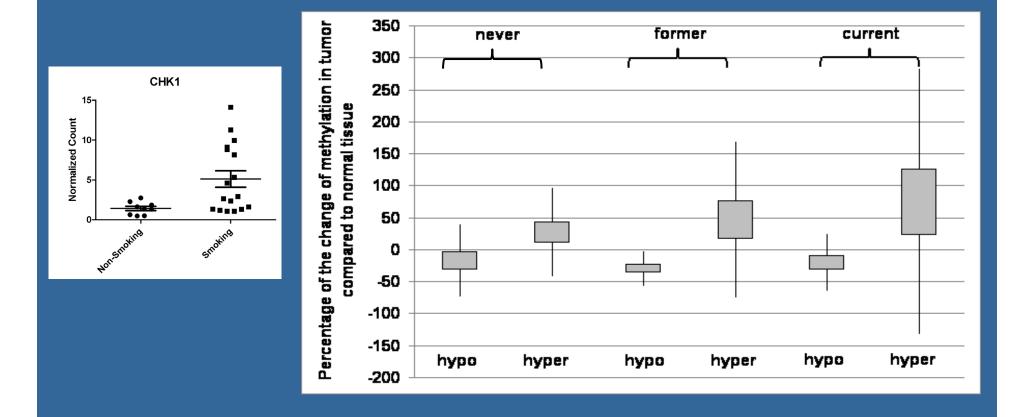
What else is altered in cancer?

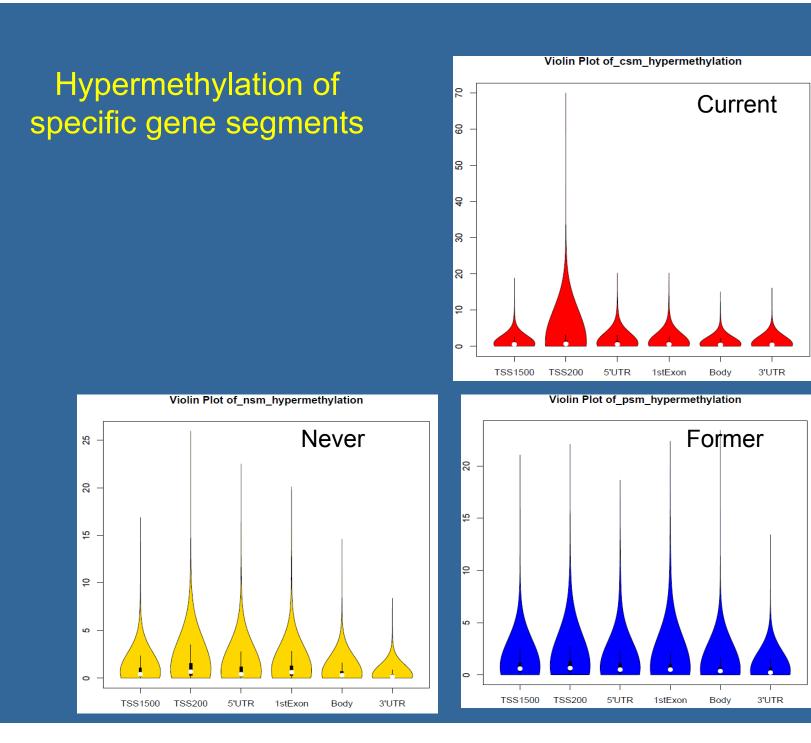
- Genome wide changes in methlylation
- Methylation changes may be a better direct indicator of environmental exposures
- How to measure methylation? Whole genome sequencing before and after bisulfite modification is one expensive way
- Alternative is a \$450 array that measures 450,000 methylation sites in the genome. Downside- only a small fraction of all methylation sites

Methylation Array

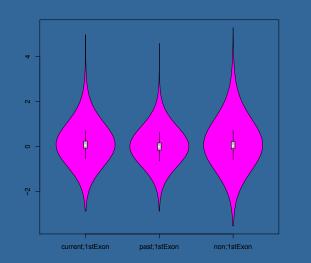
Infinium Human Methylation450 BeadChip Kits

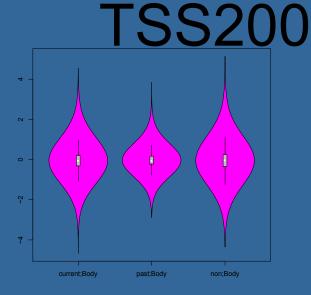
	Age	Gender
	54	М
	56	Μ
	73	Μ
Current Smoking	65	Μ
	56	Μ
	41	Μ
	57	Μ
	50	Μ
	64	F
	48	Μ
	66	Μ
Former Smoking	69	Μ
	62	Μ
	56	Μ
	76	Μ
	59	Μ
	46	Μ
	73	Μ
	55	Μ
Never Smoking	54	F
	51	Μ
	58	Μ
	48	Μ
	37	Μ

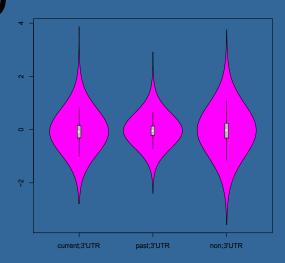

Background

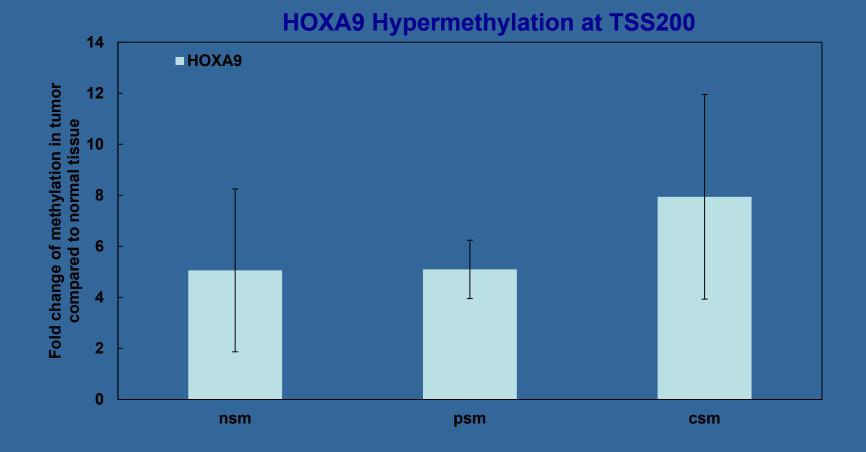

- Methylation: addition of methyl group to a substrate or the substitution of an atom or group by a methyl group.
- DNA methylation at CpG sites
 - conversion of the cytosine to 5-methylcytosine
 - Methylation in promoter region: Inverse relationship with transcriptional activity

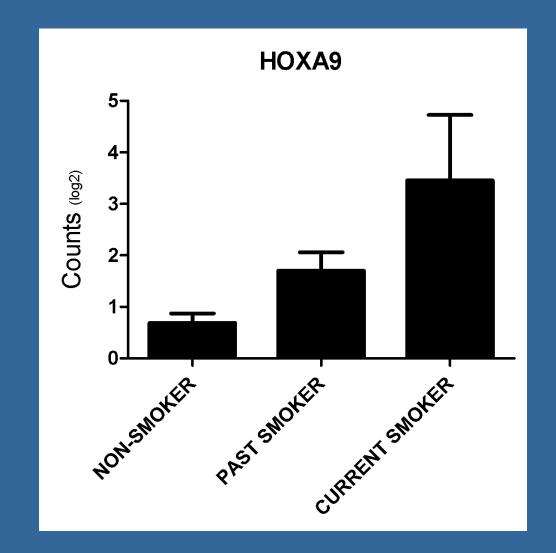
Methylome


- Identify differentially methylated cg sites
 - SAM:
 - We chose a delta with which the median FDR among all cg sites is 0.01.
 - Limma:
 - Adjusted P-value < 0.01.
- Overlap of limma result and SAM result: 11,383 cg sites. 49,047 are hyper-methylated, 64,806 are hypo-methylated.


Similar patterns of variability when comparing transcriptome analysis and hypermethylation of current smoking patients




Violinplots for M_tumor - M_normal N N N Ó 0 ή b 0 h Ó 0 Ŷ 2 Ŷ current:TSS1500 past;TSS1500 non:TSS1500 current:TSS200 past;TSS200 non;TSS200 current;5'UTR past;5'UTR non:5'UTR



Body

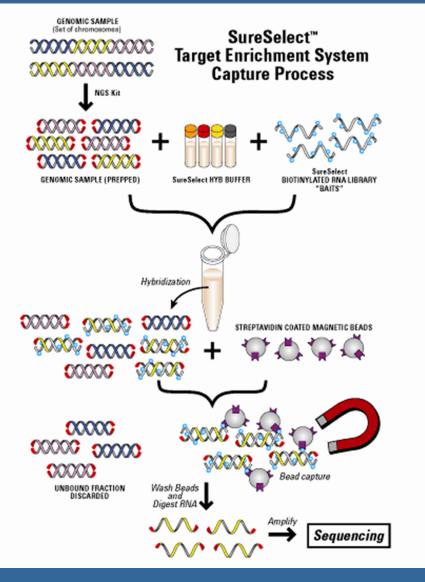
Correlation Between Two Datasets

7 patients have both methylome and transcriptome data.

- Spearman correlation:
 - 14 pairs of M-value and expression value
 - cg site and the gene it lies on
 - Hyper-methylation with down-regulation; hypo-methylation with up-regulation.

Two Lists of Genes Chosen

- Genes that are differentially methylated when comparing tumor to normal and have corresponding expression change
- Genes that are differentially methylated when comparing the smokers to the nonsmokers and ex-smokers


Validation

- Limited resources (both financial and in terms of tissue material)
- Fluidigm- Nanofluidics solution that can measure expression of 96 genes (or 48 in duplicate) against 96 samples
- Requires 5 nl per individual reaction
- Both cost and tissue effective- but you still need to purchase TaqMan probes for each gene

Whole Exome Sequencing

- Instead of sequencing the entire 6 Gb genome, why not "pull down" the 38 Mb exome?
- Much less sequencing and can sequence the exome at depth (100+ coverage)

SureSelect[™] Target Enrichment System: Workflow Agilent Technologies

SureSelect™ Target Enrichment System

Exome Sequencing

 Illumina TruSeq Library and Exome Enrichment kit

<u>Sample</u>	<u>Age</u>	<u>Smoking</u>	<u>HPV</u>
1	54	Current	Neg
2	46	Current	Neg
3	56	Current	Neg
4	69	Current	Neg
5	37	Never	Positive
6	57	Never	Positive
7	48	Never	Positive
8	54	Never	Positive

Variant Summary

		Smokers				Non-smokers				
		463	527	691	718	663	687	716	721	
	Total SNVs	117,902	144,643	142,491	133,823	141,016	114,960	144,270	141,163	
	Common SNVs	114,195	142,578	140,236	124,940	136,549	106,287	141,058	137,453	
Tumor-specific variants	Total	3,707	2,065	2,255	8,883	4,467	8,673	3,212	3,710	
	non-synonymous	179	69	72	345	171	414	122	191	
	non (novel)	81	25	25	71	48	106	37	65	
	% novel	45.3%	36.2%	34.7%	20.6%	28.1%	25.6%	30.3%	34.0%	
Tumor-specific mutations	Total	1,000	519	3,350	824	930	590	409	662	
	non-synonymous	109	34	34	59	74	34	43	85	
	non (novel)	69	16	18	40	36	15	25	56	
	% novel	63.3%	47.1%	52.9%	67.8%	48.6%	44.1%	58.1%	65.9%	

Tumor-specific variant = tumor sample different than normal (most common = LOH in tumor) Tumor-specific mutation = same as reference in normal sample, variant in cancer sample

Novel = not in dbsnp132

Patient 463 (Current smoker, Low HPV)

Total: 117,902 snvs Common to T and N: 114,195 Tumor-specific variants: 3707 Non-synonymous: 179

			Tota	als	z-score
Pathway	Genes	KEGG	List G	ene Set	
Metabolic pathways		a	5	967	-2.72
Leishmaniasis	82	a	3	64	2.13
Viral myocarditis	:	a	3	65	2.10
Allograft rejection	82	a	2	30	2.36
Asthma	:	a	2	24	2.78
Base excision repair	82	a	2	27	2.55
Graft-versus-host disease	:	a	2	31	2.30
Intestinal immune network for IgA production	82	a	2	35	2.08
Type I diabetes mellitus	:	R	2	36	2.03

Enriched pathways

										KEGG Export
Chrom.	Position	Gene	Region	Туре	dbSNP	Exon Pop	Low Cov Pop	Ref.	6747: Var +	6748: Var +
chr1	2,444,414	PANK4	CDS	snv	rs7535528	0	0	G	R	A
chr1	15,438,990	RP1-21018.1, C1orf126	CDS	snv	rs10803354	0	0	G	A	R
chr1	45,797,505	MUTYH	CDS	snv	rs3219489	0	0	С	G	S
chr1	144,879,264	PDE4DIP	CDS	snv	rs2798901	0	0	A	R	G
chr1	160,851,826	ITLN1	CDS	snv	rs2274907	0	0	Α	W	т
chr1	248,085,011	OR2T8	CDS	snv	rs4595394	0	0	С	S	G
chr1	248,801,778	OR2T35	CDS	snv	rs61834268	0	0	Α	W	т
chr2	42,991,200	OXER1	CDS	snv	rs34142793	0	0	С	S	G
chr3	49,156,473	USP19	CDS	snv	rs11552724	0	0	С	S	G
chr3	49,940,078	MST1R	CDS	snv	rs2230593	0	0	С	Y	т
chr3	75,719,154	LOC100506764	CDS	snv	-	0	0	С	М	A
chr3	195,510,073	MUC4	CDS	snv	-	0	0	G	R	A
chr4	7,436,239	SORCS2, PSAPL1	CDS	snv	rs56402179	0	0	С	Y	т
chr4	8,583,312	GPR78	CDS	snv	rs17844778	0	0	A	М	С
chr4	40,428,010	RBM47	CDS	snv	rs278981	0	0	т	С	Y
chr5	70,806,958	BDP1	CDS	snv	rs6886336	0	0	G	А	R
chr6	31,838,441	SLC44A4	CDS	snv	rs114483117, rs644827	0	0	т	Y	C
chr6	32,020,717	TNXB	CDS	snv	-	0	0	G	K	т
chr6	197,943	HLA-DRB5	CDS	SITY	rs17041043, rs74042526					

Patient 463 (Current smoker, Low HPV)

Total: 117,902 snvs Common to T and N: 114,195 Tumor-specific mutations: 1000

Non-synonymous: 109 Not in dbSNP: 69

			Тс	otals	z-score
Pathway	Genes	KEGG	List	Gene Set	
Viral myocarditis	E	a	3	65	2.47
ABC transporters	E	a	2	43	2.03
Allograft rejection	E	a	2	30	2.69
Asthma	E	a	2	24	3.14
Autoimmune thyroid disease	E	a	2	37	2.30
Graft-versus-host disease	E	a	2	31	2.63
Intestinal immune network for IgA production	E	a	2	35	2.40
Type I diabetes mellitus	E	a	2	36	2.35

Enriched pathways

Tumor

Normal

Chrom.	Position	Gene	Region	Туре	dbSNP	Exon Pop	Low Cov Pop	Ref.	6747: Var +	6748: Var +
chr1	6,278,414	RNF207	CDS	snv	rs709209	0	0	Α	R	NC
chr1	12,854,414	PRAMEF1	CDS	snv	rs1063769	0	0	G	R	NC
chr1	12,907,781	HNRNPCL1	CDS	snv	rs1737105, rs28441396	0	0	т	Y	NC
chr1	12,907,798	HNRNPCL1	CDS	snv	-	0	0	A	м	NC
chr1	12,907,802	HNRNPCL1	CDS	snv	-	0	0	С	Y	NC
chr1	12,907,803	HNRNPCL1	CDS	snv	-	0	0	С	Y	NC
chr1	16,902,894	NBPF1	CDS	snv	rs61772339	0	0	А	R	NC
chr1	24,407,877	MYOM3	CDS	snv	-	0	0	С	Y	NC
chr1	40,960,924	ZNF642	CDS	snv	-	0	0	G	S	NC
chr1	43,149,102	YBX1	CDS	snv	-	0	0	G	R	NC
chr1	45,484,178	ZSWIM5	CDS	snv	-	0	0	Α	W	NC
chr1	144,854,581	PDE4DIP	CDS	snv	rs78371650	0	0	т	Y	NC
chr1	152,276,626	FLG	CDS	snv	rs3126075	0	0	G	S	NC
chr1	181,727,945	CACNA1E	CDS	snv	-	0	0	G	R	NC
chr1	230,513,309	PGBD5	CDS	snv	-	0	0	С	Y	NC
chr1	248,524,992	OR2T4	CDS	snv	rs45552134	0	0	A	R	NC
chr1	248,651,959	OR2T5	CDS	snv	rs76332972	0	0	С	Y	NC
chr2	10,263,618	RRM2	CDS	snv	-	0	0	G	K	NC
chr2	000700006	C2orf70	-	sny		0		A	_	NC.

	Pathway	Genes	VECC		otals Gene Set	Z
	Allograft rejection	E	REGG	4	Gene Set	
	Graft-versus-host disease		a	4	33	
Patient 687 (Non Smoker,	Type I diabetes mellitus		a	4	38	
· ·	Autoimmune thyroid disease	E	4	4	40	
High HPV)	p53 signaling pathway		8	5	62	
······································	Phosphatase and tensin homolog Thrombospondin 1					
	Tumor protein p53					
	Tumor protein p73					
Total: 114,960 snvs	PERP, TP53 apoptosis effector					
·	Viral myocarditis		a	5	64	
Common to T and N: 106,287	Endometrial cancer	E	a	4	51	
	Inositol phosphate metabolism		a	4	56	
Tumor-specific variants:	Antigen processing and presentation		8	4	57	
	Fatty acid biosynthesis Phagosome		8 8	7	133	
8.673	Bladder cancer	E	a	3	39	
0,070	RNA transport		8	7	140	
Non-synonymous:	Asthma	8 =	a	2	22	
Non-synonymous.	Natural killer cell mediated cytotoxicity		a	6	118	
414	ABC transporters	E	a	3	44	

Not in dheND. 106

Enriched pathways

z-score 3.98 3.80 3.42 3.29 3.07

> 2.99 2.68 2.45 2.41 2.36 2.34 2.28 2.19 2.15 2.07 2.03

KEGG Export										
Chrom.	Position	Gene	Region	Туре	dbSNP	Exon Pop	Low Cov Pop	Ref.	T: Var +	N: Var +
chr1	1,849,529	TMEM52	CDS	snv	rs28640257	0	0	Α	G	R
chr1	2,458,010	PANK4	CDS	snv	-	0	0	G	S	С
chr1	2,488,153	LOC100133445, TNFRSF14	CDS	snv	rs4870	0	0	А	G	R
chr1	6,279,370	RNF207	CDS	snv	rs846111	0	0	G	C	S
chr1	6,614,535	NOL9	CDS	snv	rs4908923	0	0	G	А	R
chr1	9,323,910	H6PD	CDS	snv	rs6688832	0	0	G	А	R
chr1	11,736,959	MAD2L2	CDS	snv	-	0	0	С	т	Y
chr1	12,009,956	PLOD1	CDS	snv	rs7551175	0	0	G	А	R
chr1	12,921,110	PRAMEF2	CDS	snv	rs12139546	0	0	А	G	R
chr1	12,921,132	PRAMEF2	CDS	snv	rs12139550	0	0	A	G	R
chr1	12,942,119	PRAMEF4	CDS	snv	rs75355616	0	0	С	Y	т
chr1	12,942,961	PRAMEF4	CDS	snv	rs4625290	0	0	A	C	М
chr1	13,036,587	PRAMEF22	CDS	snv	rs76348406, rs77788641	0	0	С	т	Y
chr1	15,808,767	CELA2B	CDS	snv	rs3820071	0	0	G	А	R
chr1	15,808,872	CELA2B	CDS	snv	rs3766160	0	0	G	А	R
chr1	16,332,665	C1orf64	CDS	snv	rs34950166	0	0	С	т	Y
chr1	16,532,498	ARHGEF19	CDS	snv	rs41269185	0	0	G	A	R
chr1	16,577,908	FBXO42	CDS	snv	rs12069239	0	•	G	C	S
	16.9		S			. 🔺 . 🛎			A	and the second

Patient 687 (Non Smoker, High HPV)

Total: 114,960 snvs Common to T and N: 106,287 Tumor-specific mutations: 943 Non-synonymous: 106

			Т	z-score	
Pathway	Genes	KEGG	List	Gene Set	
Hematopoietic cell lineage		a	3	76	2.12
Valine, leucine and isoleucine biosynthesis	E	a	1	10	2.48

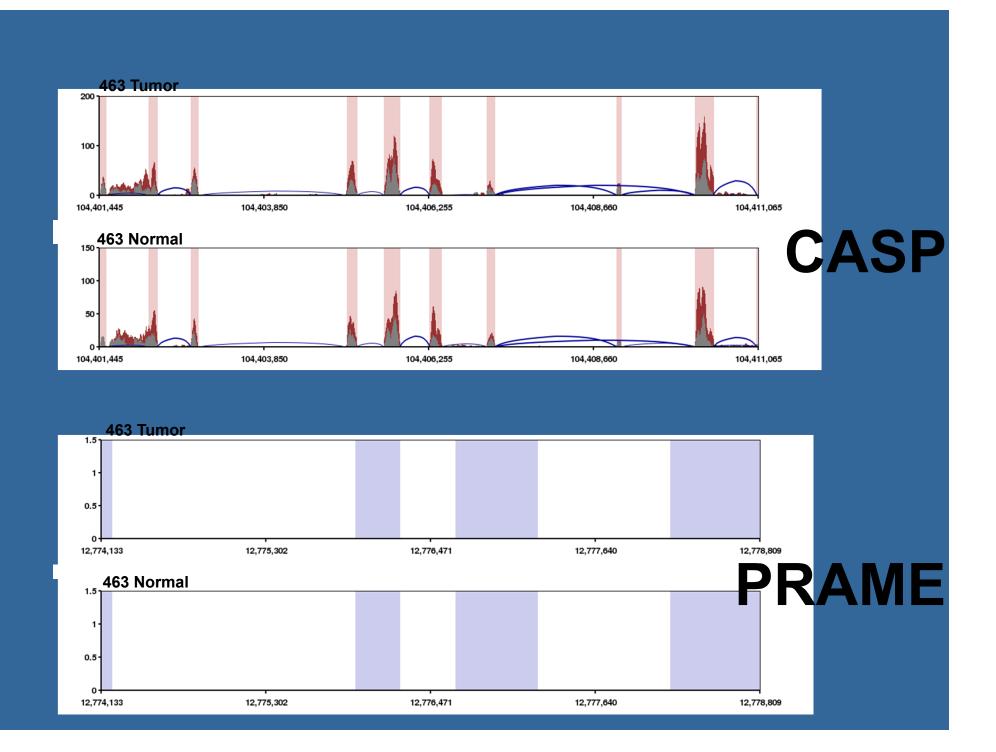
Enriched pathways

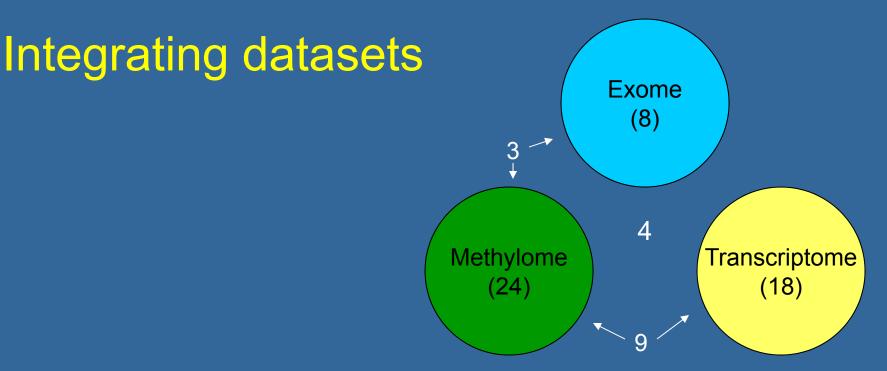
									KEG	G Export
Chrom.	Position	Gene	Region	Туре	dbSNP	Exon Pop	Low Cov Pop	Ref.	T: Var +	N: Var +
chr1	3,648,111	TP73	CDS	snv	-	0	0	G	R	NC
chr1	9,099,992	SLC2A5	CDS	snv	-	0	0	С	Y	NC
chr1	12,921,485	PRAMEF2	CDS	snv	-	0	0	А	R	NC
chr1	16,260,450	SPEN	CDS	snv	-	0	0	С	Y	NC
chr1	16,862,472	LOC100506533	CDS	snv	rs2779468	0	0	G	S	NC
chr1	32,694,187	EIF3I	CDS	snv	-	0	0	G	R	NC
chr1	89,449,483	CCBL2, RBMXL1	CDS	snv	rs74100106	0	0	С	S	NC
chr1	144,619,903	NBPF9	CDS	snv	rs71527379, rs7525482	0	0	т	W	NC
chr1	144,621,643	NBPF9	CDS	snv	rs11488527	0	0	G	R	NC
chr1	145,508,934	RBM8A	CDS	snv	-	0	0	т	K	NC
chr1	152,882,979	IVL	CDS	snv	rs17855670	0	0	С	Y	NC
chr1	207,749,010	CR1	CDS	snv	-	0	0	С	Y	NC
chr1	214,814,146	CENPF	CDS	snv	-	0	0	С	Y	NC
chr2	18,766,138	NT5C1B	CDS	snv	-	0	0	G	R	NC
chr2	39,222,390	SOS1	CDS	snv	-	0	0	С	Y	NC
chr2	55,646,019	CCDC88A	CDS	snv	-	0	0	С	Y	NC
chr2	96,517,503	LOC400986	CDS	snv	rs79524470	0	0	А	R	NC
chr2	98,129,707	ANKRD36B	CDS	snv	rs5011467	0	0	G	K	NC
	29,71	36B	CDS	şnv	rs24639	0			R	NC

Genes mutated in at least 3 out 4 patients

Non-smokers IGSF3* CDC27 MUC4

Smokers CDC27 LOC100289375 MUC4* MUC6 PRSS3


Combining Exome-seq and RNA-Seq


463 RNA-Seq 463 I

463 Exome

_									Т	Ν	Т	N	
Chrom.	Position	Gene	Region	Туре	dbSNP	Exon Pop	Low Cov Pop	Ref.	6745: Var +	6746: Var +	6747: Var +	6748: Var +	
chr1	6,278,414	RNF207	CDS	snv	rs709209	0	0	А	NC	R	R	NC	
chr1	43,149,102	YBX1	CDS	snv	-	0	0	G	R	NC	R	NC	
chr2	10,263,618	RRM2	CDS	snv	-	0	0	G	K	NC	K	NC	
chr2	27,600,585	ZNF513	CDS	snv	-	0	0	С	М	NC	М	NC	
chr2	219,268,052	CTDSP1	CDS	snv	-	0	0	Α	R	NC	R	NC	
chr5	34,821,902	RAI14	CDS	snv	-	0	0	G	R	NC	R	NC	
chr5	177,638,968	AGXT2L2	CDS	snv	-	0	0	Α	R	NC	R	NC	
chr6	109,787,200	ZBTB24	CDS	snv	-	0	0	С	М	NC	М	NC	
chr8	32,463,096	NRG1	CDS	snv	-	0	0	Α	W	NC	W	NC	
chr8	98,731,403	MTDH	CDS	snv	-	0	0	G	R	NC	R	NC	
chr11	104,900,433	CASP1	CDS	snv	-	0	0	т	Y	NC	Y	NC	CASP1
chr11	134,118,751	THYN1	CDS	snv	-	0	0	т	Y	NC	Y	NC	
chr12	64,521,471	SRGAP1	CDS	snv	rs115771292	1	0	С	Y	NC	Y	NC	
chr16	31,470,886	ARMC5	CDS	snv	-	0	0	т	NC	W	W	NC	
chr17	7,577,105	TP53	CDS	snv	-	0	0	G	S	NC	S	NC	
chr17	40,257,981	DHX58	CDS	snv	-	0	0	С	М	NC	М	NC	
chr20	33,511,157	ACSS2	CDS	snv	-	0	0	G	R	NC	R	NC	
chr21	43,708,079	ABCG1	CDS	snv	-	0	0	G	S	NC	S	NC	
chr1	12,854,414	PRAMEF1	CDS	snv	rs1063769	0	0	G	ND	ND	R	NC	C-PRAMEF1
chr1	12,907,781	HNRNPCL1	CDS	snv	rs1737105, rs28441396	0	0	т	ND	NC	Y	NC	
chr1	12,907,798	HNRNPCL1	CDS	snv	-	0	0	А	NC	NC	М	NC	
chr1	12,907,802	HNRNPCL1	CDS	snv	-	0	0	С	т	т	Y	NC	
chr1	12,907,803	HNRNPCL1	CDS	snv	-	0	0	С	NC	NC	Y	NC	
chr1	24,407,877	MYOM3	CDS	snv	-	0	0	С	ND	NC	Y	NC	
chr1	40,960,924	ZNF642	CDS	snv	-	0	0	G	NC	NC	S	NC	
chr1	144,854,581	PDE4DIP	CDS	snv	rs78371650	0	0	т	NC	NC	Y	NC	
chr1	152 076,626	FLG	CDS	snv	rs3126075		0	G	ND	ND	S	NC	
		dente de la			and a second						R		

ND = No Data

- Correlate patterns of differential expression to
 - DNA Mutations
 - Differential Methylation
- Validate exome mutations in transcriptome
- Identify RNA editing events
- Correlate methylation patterns with differential splicing events

Moving forward

- Identify gene expression patterns of key pathways that associate with risk factor groups
 - In an individual patient, which risk factors are most significantly influencing disease development
- Compare multiple datasets to determine mechanism
 - Exome sequencing (mutations)
 - Methylation Arrays
 - Biological marker of tobacco exposure

General Conclusions

- Sequencing tools have important potential for clinical application
- Importance of building larger datasets
 - Correlate with disease outcome as they mature
- Importance of integrating datasets
 - Correlate with exposure, etiology, response to therapy
- Bottleneck involves bioinformatic challenges

Acknowledgements

Rebecca Laborde,

Ph.D Vivian Wang, Ph.D Terra Lasho

<u>Analysis</u> Yan Asmann, Ph.D Sumit Middha Wei Wei, Ph.D (UMR)

<u>Geospiza</u> Todd Smith, Ph.D Eric Olsen, PhD

<u>UIUC</u> Jian Ma, Ph.D. Yiyi Liu <u>Otolaryngology</u> Charles Beatty, мD

Kerry Olson, мD Jan Kasperbauer, мD Eric Moore, мD

Steven Olson, мD Jeff Janus, мD

Nicole Tombers

<u>Anatomic Pathology</u> Joaquin Garcia, мр