

Proteomics Standards Research Group (sPRG)

sPRG: a Tale of Two Studies

Brian C. Searle University of Washington / Proteome Software searleb@uw.edu

sPRG working group members

Toni Koller (Acting Chair)

Allis Chien (EB Liaison) Christopher Colangelo David Hawke Alexander R. Ivanov Gordana Ivosev Paul Rudnick Brian C. Searle

Scott A. Shaffer

Columbia University

Stanford University Primary Ion UT MD Anderson Cancer Center Northeastern University Sciex Spectragen Informatics Proteome Software / U. of Washington U. of Massachusetts Medical School

sPRG working group goals

- Revise interpretations of previous studies
- Prepare manuscripts
- Make ABRF standards available to the community

Proteomics Standards Research Group (sPRG)

Revisiting the sPRG 2012 PTM study

PTMs continue to be a growing interest to proteomics

PRG 2003

- 2 digested proteins
- 2 synthetic phosphopeptides

Results:

- 54 labs returned data sets
- 5 identified 1 phosphopeptide
- 5 identified the other
- 3 identified both
- Massive over reporting

• Mixture of 7 phosphorylated proteins

Results:

- 44 labs returned data sets
- 50 "known" sites of phosphorylation
- 27 sites identified by multiple labs
- 8 "bonus" sites identified by multiple labs
- Only 5 sites identified by \geq 50% of labs
- Over reporting? Interpretation hampered by unknowns

- 6 digested proteins
- 23 synthetic phosphopeptides

Results:

- 43 labs returned data sets
- 23 sites identified by multiple labs
- 16 sites identified by \geq 50% of labs
- Multiply phosphorylated peptides still a challenge

- 6 digested proteins
- 45 synthetic phosphopeptides
 (including positional isomers)
- 41 synthetic modified peptides
 - sulfated tyrosine
 - nitrosylated tyrosine
 - acetylated lysine
 - mono- di- and tri-methylated arginine/lysine
 - sym/asymmetric di-methylated arginine
- 30 data sets returned

Over-reporting has been curbed somewhat

Cross study comparison shows general improvement

	PRG 2003	sPRG 2010	sPRG 2012
SV <mark>S</mark> pDYEGK	15%	40%	80%
THILLFLPK <mark>S</mark> pVSDYEGK	15%	62%	80%

Still difficult to identify multiply phosphorylated peptides

Analyses of other modifications are more successful

Confident CID identifications

Confident HCD identifications

Confident Q-ToF identifications

DISLS*DYK (Phospho/Sulfo)

Standard Availability

- Working with Thermo Fisher and Spectragen Informatics to distribute the sample with a new mass spectral library
- Revalidated the sample to confirm the make up
- Commercially available in limited quantities soon
- Sign up to be notified of its availability at http://spectragen-informatics.com/sprg

sPRG members involved in this study

Alexander R. Ivanov (Chair) Northeastern University

Christopher Colangelo Craig Dufresne David Friedman Kathryn S. Lilley Karl Mechtler Brett Phinney Kristie Rose Paul Rudnick Brian C. Searle Scott A. Shaffer Susan T. Weintraub

Primary Ion Thermo Fisher Scientific Vanderbilt University University of Cambridge IMP Research Inst. of Molecular Pathology University of California, Davis Vanderbilt University Spectragen Informatics Proteome Software / U. of Washington U. of Massachusetts Medical School University of Texas HSC

Proteomics Standards Research Group (sPRG)

Revisiting the sPRG 2014 "1000 Peptide" quantification study

Relative Quantification with Stable Isotope Labeled Peptides

- 1000 tryptic peptides from 552 proteins synthesized by JPT
- Conserved across Homo sapiens, Mus musculus and Rattus norvegicus
- Chosen because of consistency of observation across three different labs
- stable isotope labeled at R and K

- Only light cleanup: we don't know the true abundance of the peptides
- When mixed with other samples: provides a relative standard to compare across platforms
- Initial study performed with HEK 293 matrix
- 49 labs returned data sets

Retention times are extremely consistent across labs and platforms

Consensus normalized RT

 consensus normalized RT Normalized RT

Q-Exactive Ratios

Q-Exactive Ratios

Much more quantitative variability than we expected!

- Worked to assign a better "true" ratio to improve alignment
- Worked to understand where the variability was coming from

What is the "true" peptide ratio?

Constructing an accurate "true" ratio

- Only 1x was given to participants
- Triplicate analysis of all mixtures
- Two very different instruments / configurations

Assigning a "true" ratio from all the dilution mixtures

357 peptides in good agreement across most labs

Replicate accuracy doesn't necessarily imply "true" accuracy

Technical Replicate Ratio 2

Consensus Ratio

Consensus RT

Adding standard to sample allows comparison to other labs/platforms

Re-characterized standard mixed with in HeLa

- Logically, if you can compare very disparate platforms, you should be able to compare cell lines
- We ran acquisitions on 3x different instrument platforms

Different 300 peptides in HeLa?!

What does that mean? Take homes

- Matrix complexity has a huge effect on which peptides are visible
- "1000 peptide" standard doesn't mean 1000 peptides are quantitative in your sample
- 1000 peptides sounds like overkill but it guarantees some peptides are quantitative
- Of the 1000 peptides, we believe approximately 1/3rd are quantitative in any given cell line

What can you use this sample for if you don't have multiple platforms?

- Costs ~ 50¢ per sample (50 fmol)
- Cheap quantitative standard (if it overlaps with your peptides of interest)
- Loading standard
- iRT alignment standard for improving identification rates

SpikeMix[™] ABRF (cross-species standard) 100pmol - \$1049.00 10pmol - \$545.00 1pmol - \$164.00

sPRG members involved in this study

Christopher Colangelo (Chair) Primary Ion

Craig Dufresne David Hawke Gordana lvosev Toni Koller Brett Phinney (EB Liaison) Kristie Rose Paul Rudnick Brian C. Searle Scott A. Shaffer and: Brendan MacLean Vagisha Sharma

Thermo Fisher Scientific UT MD Anderson Cancer Center Sciex Columbia University University of California, Davis Vanderbilt University Spectragen Informatics Proteome Software / U. of Washington U. of Massachusetts Medical School

U. of Washington U. of Washington

sPRG 2017?

We have several new study ideas, but need new members!

sPRG2014 1000 peptide study

Ratio of Lab X/Std to Lab Y/Std