Reflections of the key LASER lines on your confocal laser scanning microscope (CLSM) will be used to test the wavelength accuracy of your spectral detector. A mirror slide will be provided for this standard test.

- 1 Put a 10x magnification objective lens in place (or other low magnification lens).
- 2 Place the mirror slide on the stage with the coverslip facing the objective. Focus first on the edge of the mirror, either via the microscope or directly on the confocal.
- 3 Choose the Lambda Mode option found under the XY scan button.
- 4 Select the light path and dye button to view optical path.

5 Select all of the laser lines available above 405 nm. In the Light Path & Dyes window choose the 20/80 mirror (BS 20/80).

6 Under the Acquisition Setting window set the scan speed to 20 μs/pixel, the size of the image to 128 x 128, the Zoom setting to 2. The bit depth will set to 12-Bit by default.

Parameter	Setting					
Frame Size	128x128					
Scan Speed	20 µs/pix					
Frame Averaging	1					
Zoom Factor	2.0					

- 7 In the **Lambda Scan** window set the wavelengths to cover the range of lasers you will be using.
- 8 Set the spectral resolution to 3 nm.

9 Also in the acquisition setting window, under the "**Image Acquisition control**" menu set the parameters as follows (slight adjustments may need to be made):

Parameter	Setting					
Pinhole	Optimal or 1					
	Airy Unit					
HV Gain	300					
Digital Offset	10					
Digital Gain	0.0					

- **10** Set the laser power for each laser line to give a signal of about 75% maximum (2000-3000 for 12 bit images).
- **11** Make sure using the range indicator LUT that you are not getting any saturated pixels (red) within any of the Lamda stack images.
- 12 Collect a Lamda stack of images by pressing the XY_L button. You may get interference patterns in the images from the laser reflections. This is normal. Notice how the periodicity of the interference pattern gets larger as you move to longer wavelength lasers.

ice Display Liv	e FRET Processi	ng Analysis Too	is Window	Help	-			s	-			-	-
l î	8= 88	88	38	1	\$ BI 4			1	••• ••• A	2 88 20		3	3 3 7
	t ambata y		-		Ind Inf.	U Crop							
							Mail 1992 1972 	_			_		_
Lembde 458-453	om	Lambda 453-454			embeda 456-453 :	-	Lembde 453-462 nm	Lembde 462-465 n		embda 405-400 rem	Lembde 460-4	R1 nm	Lemt-de 421-474 nm
.embde 474-477		Lembde 477-48			emb-da 400-403		Lembde 403-609 nm	Lemède 400-403 m		mbda 403-492 nm	Leminde 432-4	15 0.00	Lembde 435-439 or
		Lembde 591-50											
Lembde 498-501		Campda 991-99		ĺ	mbda 594-597	••••	Lembde 507-510 nm	l, embde 518-513 m		mbda 513-516 nm	Lembde 516-5	13 mm	Lemède 519-522 ni
Lemilele 922-929		Lemûde 929-921		Ľ	amileda 520-531 i		Lembde 531-534 nm	Lemède 934 937 m	<u> </u>	mbde 537-540 mm	Lemitede 540-5	43 mm	Lembde 543-540 re
Lemisde 546-543		Lemûde 949-95		Ì	aminia 952-9951		Lembda 995-998 nm	Lemõde 998-991 m	<u> </u>	mbde 591-594 nm	Lembde S64-5	67 am	Lembde 597-570 m
Lemilade 570-573		Lembde 573-57		Ì	mileda 576-579	••••	Lambda 979-582 mm	Lambda 582-585 m	- ·	mbde 585-588 nm	Lembole S66-S	91 mm	Lembde 591-594 n
Lambda 594 597		Lembde 597-60		Ì	mbda 600-663 i	•••	Lembde 603-606 mm	Lambda 606-609 m		mitrida 609-612 mm	Lembde 612-6	15 mm	Lembde 615-618 n
Lambda 616-621		Lembde 621-62			mbda 624-627	***	Lambda 627-630 nm	Lambda 638-633 m		mbda 633-636 rim	Lambda 636-6	39 mm	Lambda 639-642 n
Lambda 642-64	in m	Lambda 645-64	inm.		umbda 648-651	-	Lambda 651-654 nm	Lambda 654-657 n		embda 657-660 nm	Lambda 660 e	mn C43	Lambda 663-666 r

- 13 Select an ROI on the data set corresponding to the whole frame.
- 14 Select 'series analysis' button on top of the image. The spectra for the entire 128x128 images of the Lambda stack should appear. Verify that the laser peaks are falling within 2-3 nm of the expected values. In this example, there is a shift of 6-7 nm for each laser and a shift of 15 nm for the 633 line. In this case, the system needs to be recalibrated by a qualified technician.

- **15** The text values for the spectra can be saved as an .xls or Excel format in order to determine more precisely the wavelengths for the peak values and the FWHM of the peaks in order to determine the spectral resolution of the system.
- **16** Name the file with your name and the name of the confocal platform you collected the data on. Send the text file (.txt or .xls) to the ABRF-LMRG at <u>abrf.lmrg@gmail.com</u>.