

Get on Your Way to Microproteomics with Laser Microdissection

Sarah Baxter, PhD

Analytical Sciences Group Leader

DHMRI, Kannapolis, NC

Why Microdissection?

Selective non-contact LCM

frozen section, human prostate duct, Cresyl Violet stain, 40x obj.

Images by courtesy of Dr. T. Schlomm, UKE Hamburg

Laser Microdissection for a variety of protein analysis methods

Proteomics can be utilized for molecular profiling of captured cells

- Proteomic analysis can be leveraged to determine the proteome, protein expression changes and/or PTMs for collected cells
- Proteome analysis of LCM cells has been applied to evaluate:
 - Proteome of individual cell sub-populations
 - Molecular progression of cancer (normal, preneoplastic and cancer)
 - Tumor vs invasive cells
 - Monitor cells for efficacy of treatment

Amount of source material required

•Proteomics: => 10,000-50,000 cells

MALDI MS: single cells to 10,000 cells

•SELDI MS: 1,500-5,000 cells

•LC/MS (quantitation): 50,000 - 100,000 cells

•LCM cells can be pooled from different slides/ sections into one cap to reach the necessary number of cells

Espina V. et al, Nature Protocols 1(2): 2006

Non-Contact LCM / Pick-Up LCM

Laser Microdissection using Non-Contact LCM

Collection of:

- single cells, nuclei, chromosomes
- specific cell areas, tumor cells here: glomeruli of a kidney sample

First step: non-contact LCM of glomeruli

Laser Microdissection using Pick-Up LCM

Collection of:

- large areas of homogeneous tissue
- captured in one piece
- · for proteomic or metabolic profiling

Second step: pick-up LCM of kidney tissue

Software-assisted Positioning for Serial Sections

Coupling of LCM with MALDI MS for profiling of intact peptides and proteins

Combination of LCM and LC-MS/MS

Sample preparation is key for proteomics analysis

- Preparation goal is to extract proteins and minimize protein loss
- Key procedure steps include:
 - Tissue fixation
 - Tissue staining
 - Protein extraction
 - Protein separation
 - Sample analysis

Tissue Fixation

- Formalin fixation may negatively impact protein analysis
 - Decreases protein yield 10-100 fold
 - Slow fixative process, inconsistent fixative time frames

within a tissue

 Buffers for extracting proteins from fixed tissue are commercially available

- Minimal fixation is preferred
 - Fresh/frozen tissue
 - Precipitation fixatives
 - Ethanol/xylene
 - Can be performed after sectioning (brief fixation)
 - Paraffin embedding
 - Results in some protein loss
 - Tissue processing can aid in proteomic analysis

Tissue Sectioning: Frozen Tissue

- Do not allow tissue to dry on slide at RT
- Store frozen sections at -80C prior to LCM
- Can use a stained or unstained frozen tissue section
- Can add proteinase inhibitors to staining solutions (protein)
- Minimize LCM session
- Protein quality will degrade rapidly after staining
- Do not refreeze a stained tissue section
- Once a tissue has been stained, LCM must be completed

Tissue Staining

- Staining can result in loss of cellular proteins or inhibit protein extraction
- Light staining improves visualization
- •Reminder: Use the same staining procedure for all samples in a study set
- Preferred options include:
 - Staining an adjacent section for tissue navigation
 - Hematoxylin (in the absense of eosin)
 - Cresyl violet, Toluidine blue, Methylene blue
 - Fluorescent dyes
 - Immunostaining

•Can add protease inhibitors to staining solutions

Protein Extraction

- Physical disruption
 - Homogenization
 - Ultrasonication
 - Freeze-thaw
 - Pressure cycling
 - Bead mills
- Chemical disruption
 - Buffer kits (T-Per, Pierce)
 - Denaturation
 - Urea, thiourea
 - MS friendly detergents (Rapigest, PPS Silent Surfactant)
 - Enzymatic lysis
 - Buffers for FFPE samples
- For chemical disruption, 1 μL extraction buffer per 1,000 cells (100 ng protein)

Protein Extraction Solutions Evaluated

- 100mM Ammonium Bicarbonate (ABC)
- 100mM Tris-HCl pH 8 (TRIS)
- PPS Silent Surfactant (PPS)- 2% solution
- T-PER Tissue Protein Extraction Reagent (TPER)
- Rapigest SF surfactant (Rapigest)

Protein Extraction Results (BCA Assay)

200	la.			Average	Std Dev	[protein] ug/mL in sample	
ABC-U1	0.076	0.086	0.098	0.087	0.011	1.6	
ABC-U2	0.076	0.086	0.083	0.082	0.005	0.5	
ABC-CV1	0.063	0.066	0.066	0.065	0.002	7.8	
ABC-CV2	0.067	0.073	0.069	0.070	0.003	5.8	
Tris-CV1	0.047	0.049	0.043	0.046	0.003	15.9	
Tris-CV2	0.090	0.102	0.051	0.081	0.027		
TPER_CV1	0.083	0.096	0.084	0.088	0.007	2.1	
TPER-CV2	0.074	0.069	0.071	0.071	0.003	5.0	
Rapigest-CV1	0.311	0.308	0.317	0.312	0.005	99.6	
Rapigest-CV2	0.351	0.368	0.240	0.320	0.070	102.9	
PPS-CV1	0.121	0.117	0.126	0.121	0.005	16.7	
PPS-CV2	0.115	0.129	0.117	0.120	0.008	16.3	

^{*}TPER and Tris extraction solvents did result in some absorbance suppression for a BSA control

Recommended Procedure for LC/MS Analysis of LCM Cells

Section Tissue Protein Protein Protein Micro BCA • Directly to Rapigest • Trypsin Unstained digestion LCM kits PPS • Hemaprotocol toxylin • Store -• Other 80°C digestion kits

Common Problems for Proteomics Experiments

Problem	Possible reason	Solution
Decreased protein yield	Protein degradation before freezing, processing, and fization	Evaluate tissue quality, ensure tissue was procured and processed in a timely manner; snap freeze, embed in OCT or place in ethanol fixative within 5-10 min or procurement; add protease inhibitors
	Degradation of protein during staining and microdissection	Add protease inhibitors Limit time of microdissection for frozen sections Microdisessect cells immediately after staining
	Formalin-, parapformaldeydyde or glutaraldehyde-fixed tissue	Use frozen ethanol-fixed tissue
	Inadequate number of cells	Solubilize several caps in 1 volume of extraction buffer Use the minimal volume of extraction buffer per cap Use one cap to microdissect cells from multiple tissue sections

Technical Developments: From Single Experiments to Higher Throughput

ZEISS DHM | RI

PALM RoboSoftware User-friendly from Routine to Advanced Applications

PALM MicroBeam Single experiment to full automation

Special Thanks

- Zeiss Microimaging Labs
- www.zeiss.de/microdissection
- DHMRI
 - Jim Carlson
 - Nidhi Sharma