Light Microscopy Research Group (LMRG)

Study #2 Results

Claire M. Brown LMRG Chair

Light Microscopy Research Group, Monday March 19 2012

Study Participants

- Responses from:
 - 124 laboratories
 - 24 countries
- Data Received from:
 - 55 laboratories
 - 18 countries
- 44% Response Rate

Study Participants 18 Countries

Other Countries:

Canada Belgium Finland France Germany Israel Italia Norway Singapore Sweden Switzerland The Netherlands

Company Representation

Light Microscopy Research Group, Monday March 19 2012

Microscope Model

Light Microscopy Research Group, Monday March 19 2012

Point Spread Functions (PSF)

- 49 Participants
- 140 lenses!
- 290 point spread functions

Good PSFs

63x Oil/1.4 NA Pinhole 1 Airy Unit 63x Oil/1.4 NA Pinhole 5 Airy Unit

Good PSFs

20x Water/0.7 NA Pinhole 1 Airy Unit

20x Water/0.7 NA Pinhole 5 Airy Unit

Light Microscopy Research Group, Monday March 19 2012

Aberrations - Coma

63x Oil/1.4 NA Pinhole 1 Airy Unit

63x Oil/1.4 NA Pinhole 5 Airy Unit

Light Microscopy Research Group, Monday March 19 2012

Aberrations – Stage Drift

Light Microscopy Research Group, Monday March 19 2012

Aberrations – DIC Optics In Place

Light Microscopy Research Group, Monday March 19 2012

Aberrations – Spherical Aberrations

Light Microscopy Research Group, Monday March 19 2012

PSF Multi-photon

Light Microscopy Research Group, Monday March 19 2012

Scoring of All Data

Pinhole 1 Pinhole 5

Light Microscopy Research Group, Monday March 19 2012

Open Pinhole Shows Defects

63x Oil 1.4 NA Pinhole 1 Airy Unit

63x Oil 1.4 NA Pinhole 5 Airy Unit

Light Microscopy Research Group, Monday March 19 2012

Open Pinhole Shows Defects

63x Water 1.2 NA Pinhole 1 Airy Unit

63x Water 1.2 NA Pinhole 5 Airy Unit

Light Microscopy Research Group, Monday March 19 2012

Scoring versus Lens Type

👅 ALL DATA 🛛 🖿 "GOOD" DATA

Water Lenses Have lower Scores. "GOOD" data has lower Standard Deviation.

Light Microscopy Research Group, Monday March 19 2012

PSF Quality

67% of PSFs Good or Okay

40% with some kind of aberration

Light Microscopy Research Group, Monday March 19 2012

Aberrations

PSF Resolution

Gaussian fit and FWHM determined for x and y-axis.

Gaussian fit and FWHM determined for z-axis.

Light Microscopy Research Group, Monday March 19 2012

PSF Resolution 63x Oil/1.4 NA

PSF Resolution 63x Oil/1.4 NA

13% of data outside of 40% Deviation

Light Microscopy Research Group, Monday March 19 2012

PSF Resolution Data – 63x Oil 1.4NA

GOOD DATA COMA DIC DRIFT

Light Microscopy Research Group, Monday March 19 2012

PSF Resolution 63x Oil/1.4 NA – x-axis

Visual scoring has little correlation with resolution measurements.

Aberrated data has higher deviation from actual resolution.

PSF Resolution 63x Oil/1.4 NA – y-axis

PSF Resolution 63x Oil/1.4 NA – z-axis

Light Microscopy Research Group, Monday March 19 2012

PSF Resolution 63x Water/0.9-1.4 NA

42% of data outside of 40% Deviation

Light Microscopy Research Group, Monday March 19 2012

Oil or Water Lens?

63 Oil

Light Microscopy Research Group, Monday March 19 2012

Oil or Water Lens?

63 Oil

63 Water

Z-resolution with water lenses is poorer than with oil lenses.

Light Microscopy Research Group, Monday March 19 2012

Oil or Water Lens? X-Y resolution

Oil or Water Lens? Z-resolution

Light Microscopy Research Group, Monday March 19 2012

Resolution All Lenses 5 Airy Units

Light Microscopy Research Group, Monday March 19 2012

Resolution All Lenses 1 Airy Unit

Light Microscopy Research Group, Monday March 19 2012

PSF Study

- Quality of PSFs was quite good.
- Visual scoring very subjective.
- Outliers were typically due to errors such as DIC optics in place.
- y-resolution is better than x.
- Water lenses performed most poorly.
- If water lenses are to be used the correction collar must be properly adjusted.

Spectral Accuracy

- 42 Participants
- Four different confocal platforms
- Olympus and Nikon users could not perform the test due to laser reflection blocking that cannot be deactivated within the systems.

Spectral Accuracy

Origin Software Non-linear multi-peak Gaussian fit Max iteration: 400

Wavelength of Peak Intensity Precision = FWHM

Spectral Accuracy

Light Microscopy Research Group, Monday March 19 2012

Spectral Accuracy – High Resolution Instruments (~ 3 nm)

Light Microscopy Research Group, Monday March 19 2012

Spectral Accuracy - FWHM

Spectral Accuracy – Low Resolution Instrument (~10 nm)

Light Microscopy Research Group, Monday March 19 2012

Spectral Accuracy

Light Microscopy Research Group, Monday March 19 2012

Spectral Accuracy

Light Microscopy Research Group, Monday March 19 2012

- 27 Participants
- Two platforms
- Only companies that allowed input of known dye spectra were used due to difficulty having affordable access to single dye control samples.

Ratio = 10.10

Light Microscopy Research Group, Monday March 19 2012

Light Microscopy Research Group, Monday March 19 2012

Ratio = 22.64

Light Microscopy Research Group, Monday March 19 2012

Ratio = 10.61

Light Microscopy Research Group, Monday March 19 2012

Spectral Summary

- Spectral accuracy is very good even for low resolution systems.
- Spectral unmixing is good in general. Most issues were due to data that was not collected properly or reference spectra that were not well measured.

Acknowledgements

Carol Bayles Cornell University Claire Brown (chair) **McGill University Richard Cole** Wadsworth Center/NYSDOH **Brady Eason McGill University** Anne-Marie Girard **Oregon State University** Jay Jerome Vanderbilt University **Tushare Jinadasa McGill University**

Karen Jonscher(EB Liaison) University of Colorado George McNamara University of Miami Cynthia Opansky **Blood Center of Wisconsin** Katherine Schulz **Blood Center of Wisconsin Aleks Spurmanis McGill University** Marc Thibault Ecole Polytechnique, Montreal

Thank You to Our Participants!

Name	Country	Name2	Country2	Name3	Country3
Cameron Nowell	Australia	Juan Luis Ribas	Spain	Doug Taatjes	USA
Justin Ross	Australia	Julien Colombelli	Spain	Fred Indig	USA
Chris Guerin	Belgium	Manel Bosch	Spain	G. Esteban Fernandez	USA
James Jonkman	Canada	Sylvie le Guyader	Sweden	Gabriel Gaidosh	USA
Kimmo Tanhuanpää	Finland	Justine Kusch	Switzerland	Lauren Ehrlich	USA
Francois Waharte	France	Lauran Oomen	The Netherlands	Lu Hilenski	USA
Ralf Zenke	Germany	Allison van de Meene	UK	Sarah Swanson	USA
Aryeh Weiss	Israel	Ann Wheeler	UK	Sean Wilson	USA
Domenico Marzulli	Italia	David Johnston	UK	Stanislav Vitha	USA
Jacqueline Ross	New Zealand	Noriko Kane-Goldsmith	USA	Stephen Lentz	USA
Lloyd Donaldson	New Zealand	Carol Norris	USA	Steven Hoffman	USA
Hege Avsnes Dale	Norway	Caroline Miller	USA	Susan Garfield	USA
Paula Sampaio	Portugal	David Burk	USA	Wai Chan	USA
Pedro Almada	Portugal	Will Yutzy	USA	Yan Deng	USA
Meredith Calvert	Singapore	Alan Siegel	USA	Zhengmei Mao	USA
Alberto Hernández Cano	Spain	Anda Cornea	USA	Anne-Marie Girard	USA
Carlos Sanchez Martin	Spain	Arvydas Matiukas	USA	Carol Bayles	USA
Elena Rebollo	Spain	Brian Armstrong	USA		
Giovanna Expósito Romero	Spain	Damir Sudar	USA		

Light Microscopy Research Group, Monday March 19 2012