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Abstract (220 of 220 words) 28 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control in the United States remains hampered, in 29 

part, by testing limitations. We evaluated a simple, outdoor, mobile, colorimetric reverse transcription loop-30 

mediated isothermal amplification (RT-LAMP) assay workflow where self-collected saliva is tested for SARS-31 

CoV-2 RNA. From July 16 to November 19, 2020, 4,704 surveillance samples were collected from volunteers and 32 

tested for SARS-CoV-2 at five sites. A total of 21 samples tested positive for SARS-CoV-2 by RT-LAMP; 12 were 33 

confirmed positive by subsequent quantitative reverse-transcription polymerase chain reaction (qRT-PCR) testing, 34 

while eight were negative for SARS-CoV-2 RNA, and one could not be confirmed because the donor did not consent 35 

to further molecular testing. We estimated the false-negative rate of the RT-LAMP assay only from July 16 to 36 

September 17, 2020 by pooling residual heat-inactivated saliva that was unambiguously negative by RT-LAMP 37 

into groups of six or fewer and testing for SARS-CoV-2 RNA by qRT-PCR. We observed a 98.8% concordance 38 

between the RT-LAMP and qRT-PCR assays, with only five of 421 RT-LAMP negative pools (2,493 samples) 39 

testing positive in the more sensitive qRT-PCR assay. Overall, we demonstrate a rapid testing method that can be 40 

implemented outside the traditional laboratory setting by individuals with basic molecular biology skills and can 41 

effectively identify asymptomatic individuals who would not typically meet the criteria for symptom-based testing 42 

modalities.  43 

 44 
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Introduction 55 

More than 340,000,000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic tests have been 56 

performed in the United States as of February 22, 2021, yet it is estimated that 80-95% of infected individuals are 57 

not tested 1, 2. The availability of diagnostic testing for population surveillance around the United States has been 58 

limited because of testing supply shortages and guidelines set by public health officials 3, 4. Multiple studies have 59 

shown that asymptomatic and presymptomatic individuals infected with SARS-CoV-2 can be as infectious as 60 

symptomatic individuals 5–9, with recent estimates of up to 59% of transmission coming from asymptomatic or 61 

presymptomatic individuals 10. Virological assessments of SARS-CoV-2-positive individuals and coronavirus 62 

disease 2019 (COVID-19) patients further support the reports of asymptomatic transmission, identifying no 63 

significant differences in viral loads found in the upper respiratory tracts of asymptomatic and symptomatic 64 

individuals 5, 7, 11–13. Furthermore, Arons et al. (2020) demonstrated that positive viral cultures can be isolated from 65 

presymptomatic patients up to six days before the onset of symptoms 5. 66 

 67 

Delays in reporting test results can prevent timely isolation of infected individuals. Since transmission can occur 68 

before symptoms manifest, reporting delays create a major barrier to safely returning to workplaces and schools 14. 69 

Therefore, there remains an urgent need for rapid tests that identify presymptomatic and asymptomatic individuals 70 

while conserving diagnostic testing reagents. Non-diagnostic point-of-care (POC) testing, used in conjunction with 71 

the current clinical diagnostic testing regimen, may improve our ability to identify infectious individuals and limit 72 

their exposure to others while they are most contagious and conserve clinical diagnostic tests for those who require 73 

confirmatory testing. Incorporating active surveillance using POC tests as part of mitigation strategies for reopening 74 

K-12 schools could play an integral role in reducing SARS-CoV-2 transmission among students, teachers and staff 75 

members, families, and the surrounding community 15, 16.  76 

 77 

Loop-mediated isothermal amplification (LAMP) is a low-cost method for rapid target-specific detection of nucleic 78 

acids 17. LAMP has long been used as an alternative to gold-standard quantitative reverse transcription polymerase 79 

chain reaction (qRT-PCR) to surveil populations for a variety of pathogens, especially in resource-limited settings 80 

18–22. Reverse transcription LAMP (RT-LAMP) assays have recently been developed for rapid SARS-CoV-2 testing 81 
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23–29. RT-LAMP is an appealing candidate for POC SARS-CoV-2 testing because it is inexpensive, circumvents 82 

supply shortages by relying on different reagents than current diagnostic tests, requires minimal sample processing, 83 

and can be deployed outside of traditional laboratory settings. Recently, a number of studies have shown the 84 

correlation between the presence of virus in saliva and nasopharyngeal swabs, demonstrating that saliva specimens 85 

are a valid and reliable alternative to nasopharyngeal swab specimens for SARS-CoV-2 testing 30–35. Saliva 86 

specimen self-collection is noninvasive, can be done at home, does not require swabs or personal protective 87 

equipment, and limits direct contact between test operators and testing populations. Here we describe our experience 88 

implementing a simple, rapid-turnaround, mobile, non-diagnostic SARS-CoV-2 testing workflow combining self-89 

collected saliva and RT-LAMP in volunteers without symptoms of SARS-CoV-2 infection. Individuals were 90 

strongly encouraged to isolate and obtain follow-up diagnostic testing after receiving a positive result by RT-LAMP. 91 

This addresses a key knowledge gap of how on-site RT-LAMP testing performs in real-world conditions, since 92 

virtually all previous studies have only evaluated SARS-CoV-2 RT-LAMP in well-equipped molecular biology 93 

laboratories. 94 

 95 

Materials and Methods 96 

POC testing sites 97 

To begin operating voluntary POC testing, we developed a system of color-coded storage bins for equipment and 98 

supplies, as well as assembled folding tables, chairs, extension cords, and coolers that could be easily 99 

decontaminated and packed to fit in a Dodge Caravan (FCA US LLC., Auburn Hills, MI) or other, similarly sized 100 

minivan for transportation between testing sites and our base laboratory facility. On July 16, 2020, we launched our 101 

first mobile POC testing sites which ultimately expanded over 18 weeks to include two workplaces, two K-12 102 

schools, and an athletics program (Suppl. Table 1). With the exception of the athletics program, sites were initially 103 

outdoors, sometimes under an overhang, but otherwise open to the environment. The athletics site was a climate-104 

controlled, indoor practice field. At all sites, equipment and reagents were transported by minivan and surfaces were 105 

disinfected during assembly, breakdown, and frequently throughout testing. Participant consenting and volunteer 106 

sample collection were performed on-site but separated from the sample preparation and assay areas (most 107 

commonly on the other side of the building). In an effort to limit contamination, each assay area was set up with 108 
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three separate folding tables: (1) sample heat-inactivation and preparation, (2) preparation of RT-LAMP reagents 109 

and assay set-up, and (3) RT-LAMP incubation and imaging. Individuals responsible for sample inactivation and 110 

performing assays wore appropriate personal protective equipment (PPE) including N95 face masks, face shields 111 

or safety glasses, disposable lab coats, and double gloves. In anticipation of wet and cold fall weather, by September 112 

2020, assay workspaces were transitioned to biosafety hoods in a vacant indoor laboratory space for several POC 113 

testing locations. In October 2020, we received IRB approval for obtaining consent for repeat SARS-CoV-2 testing. 114 

This allowed us to transition away from consenting participants at each testing time point and instead allowed each 115 

enrolled participant to consent once regardless of the number of times they supplied a sample. Following reports 116 

that SARS-CoV-2 RNA is stable in saliva at room temperature for prolonged periods 36, we also transitioned away 117 

from in-person sample collection at some of the testing sites and instead distributed self-collection take-home kits 118 

for drop off at designated locations for same day processing.  119 

 120 

Sample collection and preparation 121 

We obtained approval from the University of Wisconsin-Madison Institutional Review Board (#2020-0855 and 122 

#2020-1142). Participants were advised to avoid eating or drinking anything except for water for 30 minutes prior 123 

to providing a sample. After providing informed consent, volunteers self-collected at least 50 µl of saliva in a 1.5 124 

ml “safe-lock” microcentrifuge tube using a 1000 µl unfiltered pipette tip to funnel the specimen into the tube. Each 125 

volunteer disinfected the outside of the tube with a pre-moistened disinfectant wipe. Samples collected in-person 126 

were typically processed within three hours of collection through our RT-LAMP mobile testing workflow, while 127 

samples collected using take-home kits were typically processed within 30 hours (Figure 1). Samples were first 128 

incubated in a heat block at 65°C for 30 minutes to inactivate SARS-CoV-2 37 and then incubated in another preset 129 

heat block at 98°C for three minutes to improve nucleic acid detection and inactivate salivary enzymes 38. The 130 

inactivated saliva was then centrifuged for two minutes in a benchtop microcentrifuge. Fifty microliters of the saliva 131 

supernatant were then added to 50 µl of 1x phosphate buffered saline, pH 7.4 (1x PBS).   132 

 133 

RT-LAMP reactions 134 

Three microliters of the saliva/PBS mixture for each sample were added in duplicate to 17 µl of a colorimetric RT-135 
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LAMP reaction mix containing WarmStart colorimetric LAMP mastermix (NEB, catalogue# M1800), water, and a 136 

set of six SARS-CoV-2-specific RT-LAMP primers designed against the N gene 38. The SARS-CoV-2 RT-LAMP 137 

primer set was previously designed by Broughton et al. and is currently used in an FDA emergency use authorized 138 

(EUA) COVID-19 test by Color Genomics (Table 1) 39, 40. Reactions were incubated for 30 minutes at 65°C. A 139 

smartphone or tablet was used to record images of each reaction before (time = 0) and after the incubation period 140 

(time = 30). A color change from pink/orange to yellow in at least one of two replicates was scored relative to 141 

gamma-irradiated SARS-CoV-2 (irSARS-CoV-2, BEI Resources, Manassas, VA) that was directly added to RT-142 

LAMP reactions as a positive control in each batch of reactions at concentrations ranging from 220-3,333 copies/µl 143 

(2.2x105 - 3.33x106 copies/ml). irSARS-CoV-2 was diluted and aliquoted as ready-to-run positive control standards 144 

and stored at -80°C. On the day of testing, the positive controls were removed from the freezer and stored on ice at 145 

POC sites. Individuals whose samples were recorded as potentially positive for SARS-CoV-2 by RT-LAMP were 146 

contacted by an infectious disease clinician in accordance with the IRB protocol and urged to obtain a clinical 147 

diagnostic test to confirm findings and self-isolate in accordance with public health recommendations.  148 

 149 

Limit of detection (LOD) estimation using contrived saliva samples 150 

To estimate the limit of detection of the RT-LAMP assay, contrived positive saliva samples were prepared by adding 151 

irSARS-CoV-2 initially diluted in nuclease-free water directly into unaltered saliva collected from a total of 20 152 

SARS-CoV-2-negative individuals with the final dilutions ranging from 1x104-10 copies/µl (1x107-153 

1x104copies/ml). Dilutions were based on independent, in-house qRT-PCR experiments showing that the ir-SARS-154 

CoV-2 stock concentration 8.79x106 copies/µl (8.79x109 copies/ml). Seven dilutions of irSARS-CoV-2 were 155 

prepared for each saliva sample in duplicate. RT-LAMP reactions were set up as described previously. Negative 156 

controls consisting of saliva from each of the donors without addition of irSARS-CoV-2 were also prepared in 157 

duplicate. Reactions were called positive if a color change from pre-amplification to post-amplification occurred in 158 

at least one of two replicates that was consistent with that of positive controls (a clean yellow color).  159 

 160 

Limit of detection (LOD) estimation using clinical samples 161 

De-identified discard saliva samples from 38 SARS-CoV-2-positive patients were provided by the University of 162 
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Wisconsin Hospitals and Clinics (UWHC) for evaluation of RT-LAMP performance with known positive saliva 163 

samples. Clinical saliva samples were originally collected and stored at 4°C for up to four weeks prior to assessment 164 

by RT-LAMP. Additional 10-fold and 100-fold dilutions were prepared for 13 of the positive clinical saliva samples 165 

in additional saliva collected from a negative volunteer. Clinical samples and dilutions of 13 of those samples were 166 

prepared as described previously except that 20-50 µl of heat-inactivated sample, dependent on total sample volume, 167 

was added to an equal volume of 1x PBS in a clean 1.5 ml screw-top tube and pipetted gently to mix. For each 168 

sample, three microliters were then added to duplicate colorimetric RT-LAMP reactions. Negative and positive 169 

control reactions (described previously) were also prepared in duplicate except that saliva collected from a negative 170 

volunteer was used as the negative control for these reactions. RT-LAMP reactions were prepared and images 171 

collected as described previously.  172 

 173 

Quantitative RT-PCR  174 

POC samples 175 

We measured vRNA concentration using sensitive qRT-PCR in a subset of the inactivated saliva samples described 176 

above after initial evaluation using RT-LAMP. From July 16 until September 17, saliva samples that were negative 177 

for SARS-CoV-2 by RT-LAMP were pooled into groups of six or fewer for qRT-PCR to balance cost effectiveness 178 

with reasonable estimated detection sensitivity. Ten additional, individual RT-LAMP-negative samples were 179 

submitted as negative controls alongside samples identified as positive by RT-LAMP. Saliva samples that were 180 

identified as positive for SARS-CoV-2 by RT-LAMP were tested by qRT-PCR individually to estimate our POC 181 

LOD. RNA was isolated from up to 150 µl saliva and combined with an equivalent volume of nuclease-free water 182 

using the Viral Total Nucleic Acid kit for the Maxwell RSC instrument (Promega, Madison, WI) following the 183 

manufacturer’s instructions. Viral load quantification was performed using a sensitive qRT-PCR assay developed 184 

by the CDC to detect SARS-CoV-2 (specifically the N1 assay) and commercially available from IDT (Coralville, 185 

IA). The assay was run on a LightCycler 96 or LC480 instrument (Roche, Indianapolis, IN) using the Taqman Fast 186 

Virus 1-step Master Mix enzyme (Thermo Fisher, Waltham, MA). The limit of detection of this assay is estimated 187 

to be 0.2 genome equivalents/µl (200 genome equivalents/ml) saliva. To determine the vRNA load, samples were 188 



8 

interpolated onto a standard curve consisting of serial 10-fold dilutions of in vitro transcribed SARS-CoV-2 N gene 189 

RNA kindly provided by Nathan Grubaugh (Yale University) and described by Dudley et al. 35. 190 

 191 

Clinical samples 192 

Quantitative RT-PCR was performed using the conditions described above for each of the 38 SARS-CoV-2 positive 193 

saliva samples individually; however, sample volume limitations required that for some samples, only 100 µl saliva 194 

was combined with 100 µl of nuclease-free water prior to RNA isolation. In addition, sample UWHC3 contained a 195 

lower volume than the remaining 37 samples so 50 µl saliva was combined with 50 µl nuclease-free water and used 196 

for RNA isolation as described previously. Viral loads in copies per microliter and corresponding cycle threshold 197 

numbers (Ct) are reported in Table 2.  198 

 199 

Results 200 

LOD estimation using contrived saliva samples 201 

We assessed the LOD for minimally processed saliva samples collected from 20 volunteers by RT-LAMP using 202 

irSARS-CoV-2 spiked into negative saliva samples (Figure 2D). We detected irSARS-CoV-2 by RT-LAMP in two 203 

of two replicates (Figure 2A) at 2.5x103 copies/µl (2.5x106 copies/ml) for 100% of samples, at 1x103 copies/µl 204 

(1x106 copies/ml) for 47.4% of samples, and at 500 copies/µl (5x105 copies/ml) for 26% of samples. When we 205 

included samples called positive in at least one of two replicates (see Methods and Figure 2B), the percentage of 206 

contrived samples positive by RT-LAMP at each of the aforementioned dilutions were 100%, 89.5%, and 53% 207 

respectively (Figure 2B). One sample was omitted from the analysis because it turned yellow-orange at all dilutions 208 

before the RT-LAMP reaction incubation began and was therefore uninterpretable. Because in POC testing we 209 

defined a positive RT-LAMP result as an observed post-incubation color change to yellow in at least one replicate, 210 

these results suggested that our 90% LOD is approximately 1x103 copies/µl (1x106 copies/ml).  211 

 212 

LOD estimation using clinical samples 213 

To assess the performance of SARS-CoV-2 RT-LAMP in known SARS-CoV-2 positive saliva samples as opposed 214 

to contrived positive samples, we acquired deidentified, discarded saliva samples collected from 38 patients with 215 
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laboratory confirmed SARS-CoV-2 from UWHC. Nineteen of 38 undiluted qRT-PCR-confirmed positive saliva 216 

samples were also positive for SARS-CoV-2 in two of two replicates by RT-LAMP (Figure 3; Table 2). Two 217 

additional samples were positive in one of two replicates. Quantitative RT-PCR data showed that the viral RNA 218 

(vRNA) loads of the positive samples ranged from 131 copies/µl to 5.7x104 copies/µl (1.31x105-5.71x107 copies/ml) 219 

which was consistent with our LOD for contrived samples (Table 3). Positive clinical saliva samples that were 220 

negative by RT-LAMP had estimated vRNA loads ranging from 0.402-5.49x104 copies/µl. All of the samples that 221 

were negative by RT-LAMP, with the exception of UWHC34 (5.49x104 copies/µl), had vRNA loads below our 222 

estimated reliable LOD. Furthermore, for the 13 positive clinical saliva samples that were diluted 10-fold and 100-223 

fold in additional saliva collected from a negative volunteer, detection decreased with increasing dilution factor 224 

(Table 4). 225 

 226 

POC SARS-CoV-2 RT-LAMP testing   227 

From July 16 to November 19, 2020, SARS-CoV-2 RT-LAMP was used to test a total of 4,704 samples collected 228 

from five locations. Participants were enrolled into the study regardless of their SARS-CoV-2 symptom status on 229 

the day of testing. Seventy-one percent of the samples were obtained from individuals at two research facilities, 230 

11% from two K-12 schools, and 18% from an athletics program (Supplemental Table 1). A total of 21 samples 231 

were identified as positive for SARS-CoV-2 by RT-LAMP based on a colorimetric change from pink/orange to 232 

yellow in at least one of two sample replicates (see Figure 2B for example). Similar to our experience with our 233 

contrived LOD samples, about 0.40% (19/4,704) of samples collected during POC testing exhibited a color change 234 

to yellow prior to RT-LAMP assay amplification and were therefore uninterpretable. Follow up qRT-PCR testing 235 

was conducted on each sample that appeared positive after the 30-minute amplification reaction throughout the 236 

study to determine vRNA load. Twelve of the 21 samples called positive in RT-LAMP had detectable SARS-CoV-237 

2 RNA by qRT-PCR. Viral RNA loads of these samples ranged from 8.58 copies/µl to 3.62x105 copies/µl (8.58x103 238 

copies/ml-3.62x108 copies/ml) with a median of 504.5 copies/µl (5.04x105 copies/ml) (Table 4). Eight of the saliva 239 

samples identified as positive by RT-LAMP were negative by qRT-PCR, suggesting that they were false-positive 240 

RT-LAMP results (approximately 40% of samples called positive by RT-LAMP, 0.17% of total samples tested). 241 

One RT-LAMP-positive sample was not tested by qRT-PCR because the participant did not consent to additional 242 
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molecular testing. For volunteers who consented to additional research testing from July 16 to September 17, qRT-243 

PCR testing was conducted for pools of six or fewer for all residual, heat-inactivated samples that appeared 244 

unambiguously negative by RT-LAMP. A total of 421 RT-LAMP-negative pools (2,493 samples) were tested to 245 

estimate the number of SARS-CoV-2-positive samples missed by RT-LAMP. Quantitative RT-PCR detected 246 

SARS-CoV-2 nucleic acids in five pools of RT-LAMP-negative samples. Four out of five of the positive pools 247 

contained levels of SARS-CoV-2 that were below the estimated LOD range for RT-LAMP using crude samples 248 

with vRNA load estimates of 0.236, 0.444, 0.460, 37.5, and 142 copies/µl (236, 444, 460, 3.75x104, and 1.42x105 249 

copies/ml). Taken together, the low prevalence of SARS-CoV-2 in our volunteer testing population (0.36%, 250 

including RT-LAMP-negative, qRT-PCR-positive pools) and the low vRNA load of pools positive by follow-up 251 

qRT-PCR, suggest that these five pools likely contained only a single positive sample each and suggests a false-252 

negative rate of 0.02% (5/2,493 pools) (Table 4).  253 

 254 

Discussion 255 

Strategic surveillance testing of asymptomatic individuals has been suggested as an important mitigation strategy 256 

for places at high risk for close contact, indoor SARS-CoV-2 transmission: schools, workplaces, places of worship, 257 

and prisons, among others. Decentralized, mobile RT-LAMP-based POC testing workflows can provide same-day 258 

results which can enable people with potential SARS-CoV-2 infections to quickly self-isolate and then obtain 259 

confirmatory diagnostic testing. The low per-test cost (approximately $7 per sample tested in duplicate) allows for 260 

repeated testing to identify incident infections and reduce the duration of a potentially infected individual’s exposure 261 

to others. While RT-LAMP is not as sensitive as diagnostic qRT-PCR tests in laboratory testing, qRT-PCR tests 262 

require centralized labs, which in turn leads to lengthy turnaround times. Over a period of 18 weeks, we performed 263 

4,704 SARS-CoV-2 tests across five sites using a simple, saliva-based, direct RT-LAMP assay. This work 264 

demonstrates the scalability of decentralized, mobile RT-LAMP-based testing and addresses a key knowledge gap 265 

of how POC RT-LAMP testing performs outside of well-equipped molecular biology laboratories.  266 

 267 

Our experiment using direct RT-LAMP with contrived saliva samples from a total of 20 donors demonstrated an 268 

approximate LOD of 1x103 copies/µl (89.5% in at least one replicate). Overall, our data suggest that the actual LOD 269 
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for RT-LAMP without RNA isolation may be dependent on the individual sample due to heterogeneity of saliva 270 

pH and composition 41–43. The RT-LAMP results for 38 clinical saliva samples obtained from SARS-CoV-2-positive 271 

individuals at the UWHC, were consistent with those for the contrived samples. We recognize that more clinical 272 

samples are required for a comprehensive clinical validation, but the LOD observed in clinical samples is further 273 

supported by the low vRNA loads obtained from qRT-PCR-confirmed SARS-CoV-2-positive samples identified in 274 

our volunteer population (Table 4). The performance of our RT-LAMP POC testing workflow demonstrates that 275 

inexpensive, mobile testing can be successfully performed outdoors or in other non-traditional laboratory settings 276 

to identify SARS-CoV-2-positive individuals regardless of whether or not symptoms are present. Our observed 277 

SARS-CoV-2 RT-LAMP positivity rate was 0.25% (12/4,704) for samples confirmed by follow-up qRT-PCR.  278 

Interestingly, the positivity rate of 0.25% in our volunteer population was lower than expected given the disease 279 

activity in our region during this period of time was listed as “critically high”, particularly between September 1 280 

and November 19, 2020 when the county had a 5.42% positivity rate (19,031 positive tests out of 350,722) 44, 45. 281 

The low positivity rate in our volunteer population may be partly explained by the fact that 71% of tested saliva 282 

specimens came from two research facilities where mask wearing and physical distancing guidelines were 283 

implemented early in the pandemic and followed relatively stringently (Supplemental Table 1). Volunteers for 284 

nonsymptomatic research testing might also have a different risk profile from the overall population.  285 

 286 

Potential drawbacks of colorimetric RT-LAMP-based surveillance for SARS-CoV-2 as described here include the 287 

fact that minimally-processed saliva can result in variable reaction color change without the presence of the target 288 

RNA. However, modifications of RT-LAMP-based SARS-CoV-2 assays to reduce saliva sample variability, 289 

improve result ambiguity, and increase throughput have recently been reported elsewhere and may improve the 290 

implementation of RT-LAMP-based assays for POC use 46–50. In addition, we relied on a manual RT-LAMP format 291 

during POC testing. Reading assays “by eye” inevitably results in a somewhat subjective determination of positives. 292 

Reducing false-positive results in our POC volunteer populations required consistent use of duplicate reactions for 293 

each individual, which reduced assay throughput and increased the per-sample cost. Even with our efforts to reduce 294 

calling false positive results in our volunteer populations, we still were unable to confirm approximately 40% of 295 

RT-LAMP-positive samples by follow-up qRT-PCR. Whether these false positives resulted from the individual 296 
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sample variability across saliva donors or temporary storage of the samples prior to follow-up qRT-PCR is unclear 297 

but because volunteers with a potential positive finding were strongly encouraged to receive follow-up, 298 

confirmatory diagnostic testing, we chose to err on the side of caution when interpreting direct RT-LAMP results. 299 

Furthermore, the testing landscape changed dramatically during the months we performed RT-LAMP testing. The 300 

first non-instrumented antigen test, the Abbott BinaxNOW COVID-19 Ag CARD, received FDA EUA approval in 301 

the United States on August 26, 2020 51. While the sensitivity of RT-LAMP is broadly comparable to the Abbott 302 

BinaxNOW antigen test (reported as 1.6x104 - 4.3x104 vRNA copies; Ct 30.3-28.8), because the former is 303 

technically straightforward and can be used as a SARS-CoV-2 diagnostic at testing sites operating under a Clinical 304 

Laboratory Improvement Amendments (CLIA) waiver, it is likely a better choice for rapid turnaround, on-site 305 

testing in most circumstances 52. However, even with the existence of antigen tests, RT-LAMP surveillance 306 

programs still have a place as part of a comprehensive SARS-CoV-2 risk mitigation strategy, especially in areas 307 

where access to antigen tests is limited.  308 

 309 

There are advantages to continuing saliva-based RT-LAMP surveillance testing. Importantly, the supply of 310 

diagnostic antigen tests remains tightly constrained, and in the United States, these tests are available only through 311 

government contracts. Widespread testing of individuals without symptoms with such a scarce resource may not be 312 

a wise use of these limited tests. Furthermore, recent studies have shown that antigen test performance may differ 313 

between asymptomatic and symptomatic populations. Compared to qRT-PCR, the sensitivity of FDA-approved 314 

antigen tests, BinaxNOW and the Quidel Sofia SARS Antigen Fluorescent Immunoassay, were 35% and 41% in 315 

asymptomatic individuals and 64% and 80% in symptomatic individuals, respectively 53, 54. BinaxNOW is currently 316 

only approved for use in symptomatic individuals, within 7 days of symptom onset, and samples are required to be 317 

tested within an hour of collection 55. In contrast, RT-LAMP reagents do not require a government contract and can 318 

be acquired readily from commercial and non-commercial sources, and they can also be used more flexibly for 319 

surveillance purposes because RT-LAMP is not limited to use in symptomatic individuals 56. Additionally, user 320 

acceptance of testing may also favor saliva-based RT-LAMP as it is less invasive than nasal swab-based tests. While 321 

an individual BinaxNOW test is rapid, performing several tests during a single day could cumulatively take as long 322 

as processing a batch of tests by RT-LAMP. For these reasons, RT-LAMP may still be the preferred testing method 323 
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to incorporate into a local program. In Madison, WI, two local schools have implemented RT-LAMP surveillance 324 

programs modeled on the program described here. Implementation of each program required approximately 50 325 

hours of hands-on training by our group. School staff were trained in adherence to regulations pertaining to non-326 

diagnostic testing and to competently perform RT-LAMP assays. Each school also needed time and resources to 327 

acquire the modest lab infrastructure necessary to perform RT-LAMP. In addition, a larger saliva-based RT-LAMP 328 

surveillance program has been successfully implemented in school districts in the greater Chicago suburbs 57, 58.  329 

 330 

A looming question for both RT-LAMP and antigen testing programs is whether the real-world effectiveness of 331 

frequently testing individuals without symptoms mirrors the theoretical benefits. Several important considerations 332 

that we factored into the design of RT-LAMP testing remain true: nonsymptomatic individuals account for up to 333 

59% of all transmission (24% asymptomatic and 35% presymptomatic); low-sensitivity tests are able to effectively 334 

identify those with high levels of virus shedding, and individuals with high viral loads are likely to be responsible 335 

for a significant fraction of onward community transmission; and the duration of peak infectiousness is short, so 336 

lengthy lags in reporting test results could miss a critical window of high transmissibility 10, 59. Conversely, high-337 

quality, exceptionally well-resourced testing programs such as those at the White House and among intercollegiate 338 

athletic programs have failed to stop outbreaks 60. The latter deserves special note: outbreaks in these programs 339 

occurred in spite of 100% adherence to daily testing. Data from daily sampling of individuals with incident SARS-340 

CoV-2 infection suggests that the mean duration of time from infection to peak viral shedding is approximately 341 

three days, but some individuals potentially reach peak viral shedding in under one day 61. The potential for an 342 

extremely rapid increase in viral load, which likely parallels shedding of infectious virus, means that in some cases, 343 

even daily testing might be insufficient to protect a community from someone who is newly infected.  344 

 345 

Perhaps more importantly, the benefit of frequent testing of individuals without symptoms with RT-LAMP or other 346 

assays may be substantially undermined by risk disinhibition. When people are tested frequently, they may both 347 

underestimate their own risk of becoming infected in the interval between tests and overestimate the possibility that 348 

their similarly tested contacts are uninfected; anecdotal evidence of this phenomenon is perhaps most vividly seen 349 

in the September 26, 2020 White House Rose Garden reception for Justice Amy Coney Barrett, in which many 350 
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attendees were photographed not wearing masks nor following guidelines for physical distancing 62. If infections 351 

among people without symptoms are rare (~0.4% of tests in this study, when combining RT-LAMP and pooled 352 

qRT-PCR positives), but 10% of the tested population views testing as license for increased risk-tasking, is frequent 353 

testing of symptomless people a net positive? Appropriate messaging to the community is essential with any testing 354 

program to ensure the population understands the meaning of a test result. Such issues will require an optimization 355 

of messaging to mitigate the impact of risk disinhibition to the extent possible. 356 

 357 

Ultimately, this study provides proof of concept and guidance for how decentralized rapid testing could be 358 

implemented in a mobile testing scenario, which may be especially useful in resource-limited settings. Despite the 359 

caveats presented above, we identified 12 SARS-CoV-2-positive individuals and likely prevented onward 360 

transmission from those individuals who otherwise would not have known they were positive. Rapid tests, although 361 

less sensitive than qRT-PCR, have shorter turnaround times and could bridge the gap between SARS-CoV-2 362 

surveillance and diagnostic testing. POC testing can be effective for identifying asymptomatic individuals but must 363 

be used in conjunction with appropriate messaging and other mitigation strategies to effectively reduce SARS-CoV-364 

2 transmission.  365 
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Figure legends 636 

 637 

Figure 1: Point-of-care RT-LAMP SARS-CoV-2 testing workflow. Steps 1-5. Saliva sample preparation. Steps 638 

6-7. RT-LAMP reagent preparation. Steps 8-10. RT-LAMP reactions and results interpretation. A reaction color 639 

change from pink/orange to yellow after 30 minutes in at least one of two sample replicates was scored as positive. 640 

Figure was created using BioRender.com. 641 

 642 

Figure 2: Detection of SARS-CoV-2 in contrived saliva samples by direct RT-LAMP. A. Representative 643 

example of a sample positive in two of two replicates. Sample is negative saliva spiked with irSARS-CoV-2. B. 644 

Representative example of a sample positive in one of two replicates C. Representative negative sample showing 645 

no colorimetric change in either replicate. D. Bar graph of results of limit of detection (LOD) assessment with 646 

contrived saliva samples from 19 volunteers. Gamma-irradiated SARS-CoV-2 (irSARS-CoV-2) vRNA load is 647 

shown as copies/µl on the x-axis, number of samples positive in two (black), one (dark gray), or zero (light gray) 648 

replicates is shown on the y-axis.  649 

 650 

Figure 3: Detection of SARS-CoV-2 in 38 clinical saliva specimens by direct RT-LAMP. The vRNA load of 651 

each clinical sample is plotted on the x-axis relative to the in-house CDC N1 qRT-PCR assay cycle threshold (Ct) 652 

on the y-axis. Black, dark gray, and light gray indicate two, one, and zero positive replicates respectively.  653 

 654 

 655 
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 660 
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Table 1. RT-LAMP N-gene primers 663 

Primer  Sequence 5’->3’ Concentration 

Outer forward primer (F3) AACACAAGCTTTCGGCAG 0.2uM 

Outer backward primer (B3) GAAATTTGGATCTTTGTCATCC 0.2uM 

Forward inner primer (FIP) TGCGGCCAATGTTTGTAATCAGCCAAGGAAATTTTGGGGAC 1.6uM 

Backward inner primer (BIP) CGCATTGGCATGGAAGTCACTTTGATGGCACCTGTGTAG 1.6uM 

Loop forward primer (LF) TTCCTTGTCTGATTAGTTC 0.8uM 

Loop backward primer (LB) ACCTTCGGGAACGTGGTT 0.8uM 

664 
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Table 2. RT-LAMP evaluation of SARS-CoV-2 positive clinical saliva samples. 

Sample Ct (N1 assay) Positive by 
RT-LAMP 

vRNA load 
(copies/µl) 

Sample Ct (N1 assay) Positive by 
RT-LAMP 

vRNA load 
(copies/µl) 

UWHC1 27.65 0/2 3.25x102 UWHC20 25.80 2/2 9.48x102 

UWHC2 32.7 0/2 10.9 UWHC21 20.18 2/2 4.40x104 

UWHC3 20.98 2/2 5.17x104 UWHC22 28.92 0/2 1.13x102 

UWHC4 24.07 2/2 3.57x103 UWHC23 21.26 2/2 2.10x104 

UWHC5 26.53 2/2 6.81x102 UWHC24 29.92 0/2 57.2 

UWHC6 30.85 1/2 37.4 UWHC25 36.71 0/2 0.796* 

UWHC7 36.96 0/2 0.701 UWHC26 25.96 2/2 1.31x102 

UWHC8 26.28 1/2 8.10x102 UWHC27 29.99 0/2 54.1 

UWHC9 37.59 0/2 0.402 UWHC28 24.34 2/2 2.58x103 

UWHC10 24.01 2/2 3.72x103 UWHC29 20.55 2/2 4.72x104 

UWHC11 22.39 2/2 1.10x104 UWHC30 33.18 0/2 7.89 

UWHC12 35.46 0/2 1.75 UWHC31 22.87 2/2 9.57x103 

UWHC13 36.09 0/2 1.14 UWHC32 23.07 2/2 8.33x103 

UWHC14 23.11 2/2 5.96x103 UWHC33 26.85 2/2 6.20x102 

UWHC15 23.38 2/2 4.95x103 UWHC34 20.33 0/2 5.49x104 

UWHC16 33.86 0/2 3.99 UWHC35 23 2/2 8.88x103 

UWHC17 n/a 0/2 0 UWHC36 32.26 0/2 14.9* 

UWHC18 23.02 2/2 6.34x103 UWHC37 33.94 0/2 4.33 

UWHC19 37.31 0/2 0.612 UWHC38 25.96 2/2 1.74x103 

*Sample only positive in one qRT-PCR replicate.  

 



28 

Table 3. RT-LAMP results for 10- and 100-fold dilutions of 13 SARS-CoV-2-positive samples from UWHC. 

Sample 1:10 dilution result 1:100 dilution result Undiluted vRNA load (copies/µl) 

UWHC1 1/2 0/2 3.25x102 

UWHC2 0/2 0/2 10.9 

UWHC3 2/2 2/2 5.17x104 

UWHC4 2/2 2/2 3.57x103 

UWHC5 1/2 0/2 6.81x102 

UWHC6 0/2 0/2 37.4 

UWHC7 0/2 0/2 0.701 

UWHC8 1/2 0/2 8.10x102 

UWHC9 0/2 0/2 0.402 

UWHC10 2/2 0/2 3.72x103 

UWHC11 2/2 1/2 1.10x104 

UWHC12 0/2 0/2 1.75 

UWHC13 0/2 0/2 1.14 
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Table 4. Samples identified as potentially positive for SARS-CoV-2 by RT-LAMP during point-of-need testing.  

RT-LAMP-positive sample qRT-PCR viral load copies/µl 

POC1 8.53 

POC2 2.15x104 

POC3 neg 

POC4 neg 

POC5 neg 

POC6 neg 

POC7 3.62x105 

POC8 neg 

POC9 n/a* 

POC10 2.12x103 

POC11 neg 

POC12 1.04x103 

POC13 2.06x102 

POC14 neg 

POC15 52.8 

POC16 6.02x102 

POC17 87.3 

POC18 1.17x103 

POC19 neg 

POC20 1.38x102 

POC21 4.07x102 

*Volunteer did not consent to follow-up testing.  
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