Quantitative single cell proteomics experiments with SCoPE2

HARRISON SPECHT

Bioengineering Department Barnett Institute Northeastern University

March 1, 2020

Application

- Emergence of macrophage heterogeneity
- Absent exogenous polarizing cytokines
- in vitro

Single Cell ProtEomics by Mass Spectrometry (SCoPE2)

Single Cell ProtEomics by Mass Spectrometry (SCoPE2)

• Carrier: Enough material to reduce losses, aid identification

Single Cell ProtEomics by Mass Spectrometry (SCoPE2)

• Reference: A consistent denominator in same linear range of quantitation as single cells, for comparing relative protein levels across sets

• Set: Carrier, reference, and as many single cells or control wells as unique barcodes allow

SCoPE2 Design goals Example Diagnosis

Protocol summary 1/4

1. Prepare 384-well plates with 1uL of 25 pmol Waters MassPrep in HPLC water.

- 2. Sort single cells into the 384-well plates.
- 3. Freeze plates at -80C until ready to proceed.

Protocol summary 2/4

Single Cell ProtEomics by Mass Spectrometry (SCoPE2)

4. Rapidly transfer plate to thermal cycler, heat samples to 90C for 10 minutes.

5. Spin down and cool plates, sonicate 5 minutes, spin again.

6. Add 0.2 uL mastermix to each well, to a final concentration of 100mM TEAB, 10ng/uL Trypsin and 0.25 units/uL benzonase.

SCoPE2 Design goals Example Diagnosis

Protocol summary 3/4

Single Cell ProtEomics by Mass Spectrometry (SCoPE2)

- 7. Incubate plate at 37C for 3h.
- 8. Add 0.5uL of 22mM TMT to each sample. Incubate RT, 1hr.
- 9. Add 0.2uL of 0.5% hydroxylamine to each sample. Incubate RT, 30min.

SCoPE2 Design goals Example Diagnosis

Protocol summary 4/4

10. Combine samples by passing 5uL Carrier/Ref mixture through each sample well. Follow with 50% acetonitrile.

11. Dry sample and resuspend in 1.2 uL of 0.1% formic acid in glass autosampler vial or store dry at -80 C.

12. Analyze by LC-MS/MS.

Protocol, required equipment

- 1. Means of isolating single cells: by hand, flow cytometry/FACS, et cetera
- 2. Means of heating 384-well plate, preferably with heated lid to minimize evaporation.
- 3. Automated liquid dispensing helps, but all volumes used can be accomplished with multichannel.

Protocol, tips and tricks

- 1. Clean trypsin is key.
- 2. TEAB is mass spec compatible.
- 3. Small volume injections.
- 4. Inject directly onto the analytical column to avoid losses.
- 5. Glass to minimize peptide loses.
- 6. Turning off voltage or dripping solvent to keep quenched TMT from dirtying MS.

Design considerations

- How many cells
- How many genes (proteins)
- Power calculations

tSNE 1

¹Tirosh et al. Science. 2016.

Harrison Specht Single cell proteomics experiments

Murphy's law...

- Assume everything that can go wrong, will go wrong!
- Whatever goes wrong, will have disastrous consequences!

SCoPE2 Design goals Example Diagnosis

How do we design experiments?

1. Did we succeed? Can we trust our data?

2. If not, how did we fail? Design to diagnose!

Verification of success

- External comparisons
 - Fluorescent proteins
 - Bulk measurement

SCoPE2 Design goals Example Diagnosis

Example: fluorescent proteins

³Budnik et al. Genome Biology. 2018.

Harrison Specht Single cell proteomics experiments

Verification of success

- Internal validation
 - Control wells
 - Relative reporter intensity (rRI)
 - Consistency of protein quantification

Control wells

Clean sample preparation

Example experiment

Monocyte (M) to Macrophage (Φ) differentiation

Design to avoid barcode impurity

Results!

Example experiment

1. Did we succeed? Can we trust our data?

Internal validation

SCoPE2 Design goals Example Diagnosis

Consistency of quantification

SCoPE2 Design goals Example Diagnosis

Internal validation

External comparison

External comparison

Example experiment

2. How could we have failed ?

What to diagnose in SCoPE2

Single Cell ProtEomics by Mass Spectrometry (SCoPE2)

Optimizing LC-MS/MS

100xM standard

RI	samples		
126	5,000 T-cells		
127N	5,000 monocytes		
127C	not used		
128N	not used		
128C	100 T-cells		
129N	100 monocytes		
129C	100 T-cells		
130N	100 monocytes		
130C	100 T-cells		
131N	100 monocytes		
131C	not used		

Is the LC clean?

100xM standard

RI	samples			
126	Carrier			
127N	Reference			
127C	Unused			
128N	Unused			
128C	Unused			
129N	Unused			
129C	Unused			
130N	Unused			
130C	Unused			
131N	Unused			
131C	Unused			

Fraction of Missing data per TMT Channel

Coisolation

⁴Tyanova et al. Proteomics. 2015.

Harrison Specht Single cell proteomics experiments

SCoPE2 Design goals Example Diagnosis

Increasing probability of apex sampling

Results!

More...

Issues beyond LC-MS/MS:

Batch effects

• Separate treatment and control from potential batches

Randomized plates

Further diagnosis

- Digestion efficiency
- Labeling efficiency

Small bulk sample

Summary

- 1. Protocol + tips
- 2. Experimental design

Website

SCoPE2	€ Search SCoPE2	bioRxiv Preprint Slavov Lab			
Home Download data	SCoPE2:				
DO-MS reports SCoPE2 videos Mass-spec analysis	<u>Single Cell ProtEomics by Mass</u>				
Single-cell proteomics	Quantifying proteins in single cells at high-throughout with mass spectrr	ometry			
	SCoPE2 Preprint GitHub JPR Perspective Science Per	spective			
	Abstract				

The fate and physiology of individual cells are controlled by protein interactions. Yet, our ability to quantitatively analyze proteins in single cells has remained limited. To overcome this barrier, we developed SCoPE2. It lowers cost and hand-so time by introducing automated and miniatruzed Nikolai Slavov

Workshop videos

Design of single-cell proteomics experiments | Harrison Specht | SCP2019

Data integration and analysis. Standards for benchmarking quantification | Nikolai Slavov | SCP2019 Nikolai Slavov

Sample preparation for single-cell MS analysis | Edward Emmott | SCP2019 Nikolai Slavov

Optimizing LC-MS/MS analysis with DO-MS | Gray Huffman | SCP2019

Nikolai Slavov

Harrison Specht Single cell proteomics experiments

Acknowledgments

University of Liverpool Ed Emmott

Northeastern University Aleksandra A. Petelski R. Gray Huffman Nikolai Slavov

Merck Exploratory Sciences David H. Perlman Hendrick Wesseling Erik Hett

Harvard Medical School Marco Serra Peter Kharchenko

<u>MIT</u> Antonius Koller

Questions?

SCoPE2: scope2.slavovlab.net

${\rm SCoPE\text{-}MS: \, bit.ly/SCoPE\text{-}MS}$

harrisonspecht.com

Appendix

Benchmark	SCoPE-MS	SCoPE2	Relevant figure
Correlation to benchmark fold-changes	0.2	0.89	3c
Purity of ions isolated for quantification	79%	97%	2d
Single-cell protein measurements / hour	610	4,630	2f
Sample preparation:			
- Time, hours / cell	< 1	< 0.03	2a
- Cost, USD / cell	< 10	< 1	1a
LC-MS/MS:			
- Time, hours / cell	0.50	0.12	2a
- Cost, USD / cell [†]	48 - 96	10 - 20	1a