Reproducibility of indel formation rates by comparing guideRNA format and delivery method

GERG Study 2018-2019

ABRF 2019 Annual Meeting

Kym Delventhal

Stowers Institute for Medical Research

GERG

- Started in 2015 with 4 members
- Currently have 8 members
 - Kym Delventhal (Co-Chair)
 Stowers Institute
 - Elizabeth Sergison (Co-Chair)
 Dartmouth College
 - Shondra M. Pruett-Miller St.
 Jude Children's Research Hospital
 - Channabasavaiah Gurumurthy -University of Nebraska Medical Center
 - Eric Kmiec Gene Editing Institute
 - Maureen Regan University of Illinois Chicago
 - Timothy J. Dahlem Recursion Pharmaceuticals
 - Gerald Marsischky Independent Consultant (not pictured)

Genome Engineering

- Allows for targeted modifications of genomic DNA
- A double strand break is made at the genomic location of interest
- The cell repair of the DSB allows
 - Small insertions and deletions form, in a coding region this can cause frameshift mutations
 - Homology directed repair incorporates a donor template sequence

Genome Engineering with CRISPR-Cas9

guideRNA

- 20 nucleotide recognition site next to a PAM (NGG)
- Scaffold that interacts with Cas9
- Cas9 protein
 - Generates DSB 3bp upstream from the PAM site

guideRNA and Cas9 formats

- Plasmid expressing guideRNA and Cas9
 - Single guideRNA with promoter
 - Cas9 with promoter
- Ribonucleoprotein (RNP)
 - crRNA + tracrRNA annealed to form sgRNA
 - Synthetic single guideRNA
 - Cas9 Protein

crRNA

Linker loop

PAM site

tracrRNA

GERG 2017 Study

- CRISPR/Cas9 Methods: Preferences from the Field
- Plasmid with Lipofection was the most popular combination for mammalian cell work

https://abrf.org/research-group/genome-editing-research-group-gerg

Plasmid vs RNP

- Cells that are amenable to transfection or viral transduction
- Optimal promoters for Cas9 and guideRNA must be cloned into plasmid
- Cas9 must be transcribed and translated from plasmid and takes longer to act
- Cas9 expression persists longer from a plasmid
- Plasmid DNA can become randomly integrated in the genome

- Use of nucleofection can deliver to many cell types, including primary cells
- Cas9 protein is organism independent, helpful to cores with multiple organisms
- Cas9 protein is ready to act at delivery
- RNP is degraded after 24 hours
- Cannot integrate in the genome

Lipofection vs Nucleofection

RNP Activity Comparison with Synthego sgRNA Low-Medium-High

Cell Line	sgRNA Type	RNP Ratio (sgRNA:Cas9)	Cas9 Protein Amount (pmol)	# Cells/nucleofection	Lonza 4D Nucleofector Program	Cuvette	Solution
K562	Modified	3:1	25pmol	50,000	FF-120	Small	Р3

GERG Study Proposal

All experiments were done on HEK293 cells
LipoD293 transfection reagent for lipofections
Lonza-IIB or Lonza-4D nucleofector
Cas9 protein from Synthego
All samples were collected and sent out for Next-generation sequencing (NGS)

GERG Lab Participants

- 3 gRNA that were previously identified as low, medium, high activity
- PX330 plasmids cloned
 - Expresses guideRNA and Cas9
- Donations and discounts
 - 2-part gRNA
 - sgRNA
 - Cas9 protein
- Cell line and reagents sent to participants
- 4 sites performed cell experiments
- 1 site performed targeted amplicon NGS for indel analysis

Genome editing workflow with NGS analysis

CRISPR-Cas9 technology allows the creation of user-defined genomic modifications in cells and whole

organisms. However, quantifying editing rates in pools of cells or identifying correctly edited clones

Accepted: 25 February 2019

Published online: 12 March 2019

Plasmid

	Rxn volume	plasmid [ug]	Cells/rxn
Stowers		1	500,000
Dartmouth		1	500,000
UIC		1	500,000
CCHS		1	500,000

	Rxn volume	plasmid [ug]	Cells/rxn
Stowers	100ul	2	1,000,000
Dartmouth	100ul	2	1,000,000
UIC	100ul	2	1,000,000
CCHS	20ul	0.5	250,000

Shirin Modarai, Elizabeth Sergison

2-Part gRNA

■ low ■ med

Dartmouth

UIC

CCHS

100ul

100ul

20ul

오 1	5.00%					
lude 1	0.00% -		_			
Normalized	5.00% -	-8-		di		
N N	0.00%					
		Stowers	Dartmouth	UIC	CCHS	
■ h	igh					
		Rxn volume	Guide RNA: Cas9	Ratio of	Cells/rxn	
			protein [pmol]	RNA:protein		
	Stowers	100ul	160:139	1	460,000	

480:416

160:139 120:104

	Rxn volume	Guide RNA:Cas9 Protein [pmol]	Ration of RNA:protein	Cells/rxn
Stowers		24:24	1	500,000
Dartmouth		6:6	1	160,000
UIC		6:6	1	160,000
CCHS		6:6	1	160,000

1 Shirin Modarai, Elizabeth Sergison

1,400,000

460,000

350,000

1-Part sgRNA

	Rxn volume	Guide RNA: Cas9	Ratio of	Cells/rxn
		protein [pmol]	RNA:protein	
Stowers		15.6:12	1.3:1	500,000
Dartmouth		3.9:3	1.3:1	120,000
UIC		3.9:3	1.3:1	120,000
CCHS		3.9:3	1.3:1	120,000

	Rxn volume	Guide RNA: Cas9	Ratio of	Cells/rxn
		protein [pmol]	RNA:protein	
Stowers	100ul	720:80	9:1	600,000
Dartmouth	100ul	720:80	9:1	600,000
UIC	100ul	720:80	9:1	600,000
CCHS	20ul	180:20:00	9:1	200,000

Shirin Modarai, Elizabeth Sergison

Most Reproducible: Nucleofection + 1-part sgRNA

	Stowers	Dartmouth	UIC	CCHS
Delivery method with highest indel rate	nucleofection	lipofection	nucleofection	nucleofection
GuideRNA format with highest indel rate	sgRNA	plasmid	sgRNA	sgRNA

Experience Level

Delivery Method + Reagent Format	Stowers Experience	Stowers Highest Indel Rate	Dartmouth Experience	Dartmouth Highest Indel Rate	UIC Experience	UIC Highest Indel Rate	CCHS Experience	CCHS Highest Indel Rate
Lipofection + Plasmid	beginner (1-10 transfections)	46.2	master (50+ transfections)		intermediate (10- 50 transfections)	58.8	intermediate (10-50 transfections)	9.9
Lipofection + 2 part gRNA	beginner (1-10 transfections)	2.1	beginner (1-10 transfections)	13.6	intermediate (10- 50 transfections)	3.8	beginner (1-10 transfections)	3.6
Lipofection + 1 part sgRNA	beginner (1-10 transfections)	2.5	beginner (1-10 transfections)	7.3	beginner (1-10 transfections)	3	beginner (1-10 transfections)	4.7
Nucleofection + Plasmid	beginner (1-10 transfections)	6.8	beginner (1-10 transfections)	13.1	beginner (1-10 transfections)	8.2	master (50+ transfections)	33.3
Nucleofection + 2 part gRNA	beginner (1-10 transfections)	4.7	beginner (1-10 transfections)	19.1	beginner (1-10 transfections)	9.4	master (50+ transfections)	20.1
Nucleofection + 1 part sgRNA	beginner (1-10 transfections)	83.6	beginner (1-10 transfections)	5	beginner (1-10 transfections)	71.3	master (50+ transfections)	34.4

GERG Study Conclusions

- Lipofection worked best with plasmid
- Nucleofection worked best with RNP
- Nucleofection + sgRNA had highest indel rates overall
 - Was the most reproducible
 - Worked well for beginners
- Indel rates varied across all methods, all sites
 - If your guideRNA results aren't ideal, try another method
- Standard Operating Procedures are needed for RNP delivery
 - Difficult to determine the preferred amount to use for each method
 - Even after discussion, we still did not use exact same values
 - Adjustments based on reaction volumes, cells, equipment available

Acknowledgements

Elizabeth Sergison – Dartmouth

Brandon Miller – Stowers

Shirin Modarai – CCHS

Maureen Reagan – UIC

Shondra Miller – St. Jude

Shaina Porter – St. Jude

