

Glycobiology	
Glycoconjugates • Glycolipids • GPI anchors • Proteoglycans • Protein N- and O-linked glycosylation	
o O-linked GlcNAc • Nucleus, Cytoplasm • Associated with Phosphorylation	
o Asn-linked • Asn-Xxx-Ser/Thr Consensus Sequence • Complexity Increases with that of cell	
o Ser/Thr-Linked • Consensus? (proline, other indicators, no • Hard to release, no good endoglycosidas	ot reliable) es
Mass Spectrometry of Glycans and Glycoproteins	ABRF Workshop 2013

 Many aspects of the pathway are conserved from yeast to plants and animals

• Common features:

- » Similar synthesis of the lipid-linked precursor of the protein-bound oligosaccharide
- » Similar transfer to protein acceptor sequence motif: Asn-X-Ser/Thr
- » Trimming of all of the glucose residues
- » Trimming of some of the mannose residues
- » Extension of the trimmed oligosaccharide by sugar addition in the Golgi complex
- » Similar mechanism for acquiring nucleotide sugars into the Golgi complex

Mass Spectrometry of Glycans and Glycoproteins

ABRF Workshop 2013

N-linked glycosylation sites identified in a proteomic experiment on *E. coli*, which does not glycosylate

1% FDR	LTQ		LTQ-FTICR		
	Deamidation ¹⁶ O	Deamidation ¹⁸ O	Deamidation ¹⁶ O	Deamidation ¹⁸ O	
Unique glycopeptides	519	312	65	19	
Unique glycopeptides containing motif (NXS/T)	55	33	12	0	
Unique protein	271	270	317	334	
Unique glycoproteins	212	170	58	18	
Unique glycoproteins containing motif (NXS/T)	43	25	10	0	

- Lower m/z accuracy of LTQ leads to more false positives
- Glycosylation sites identified by LTQ-FT in ¹⁶O were either sites of deamidation or selection of the 1¹³C peak as the precursor
- ¹⁸O labeling reduces incorrect assignments by reducing mass accuracy demands and eliminating natural deamidation being assigned as a glycosylation site

Sites "identified" as being glycosylated are denot sequences for N-linked glycosylation (N-X-S/T) ar	ed with as N	*, and the co	nsensus
Denoted N-linked glycosylation sites	Charge	XCorr	ΔC _n
IYGSIPVEFTQLN*FQFL <u>N*VS</u> YN*R(L)	3	5.46	0.71
IYGSIPVEFTQLNFQFL <u>N*VS</u> YN*R(L)	2	4.58	0.10
LQSFDEYSYFHN*R(C)	2	3.48	0.18
NKLEGDASVIFGLN*K(T)	3	4.22	0.12

OH

Many amines have been applied to labeling glycans, in the current work Procainamide is favored.

